Towards optimization of the COSMO-2 model for quantitative precipitation forecasts

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Department of Home Affairs FDHA I Office of Meteorology and Climat

Felix Ament¹, Marcel Koller²

felix.ament@meteoswiss.ch

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

1 Federal Office of Meteorology and Climatology MeteoSwiss, Zürich, Switzerland 2 Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland

COSMO-2

COSMO-2 is the Swiss high resolution ($\Delta x=2.2$ km) version of the weather prediction model COSMO (formerly known as Lokal-Modell, LM), which will become operationally at the beginning of next year Expected benefits of this model are

- better representation of small scale
- features above complex topography direct simulation of deep convection
- improved simulation of local extreme events

This may lead to improved forecast of near surface parameters (like 2m-temperature and 10m-wind) and precipitation. The evaluation of precipitation forecasts is the focus of this poster

Synoptically driven situations

- COSMO-2 and COSMO-7 are very similar
- and perform well on coarse scale ... but still exhibit both large local errors.

Left: Alpine domain orresponding clas sical scores again: data. Bottom: Me ative error of all twelve cases at 20kn

Impact of turbulence parameterization

Asymptotic turbulent length scale I_∞ is a measure for the maximal extent of parameterized turbulent eddies

- Parameterized turbulent fluxes are lowered (Fig. 2a, 2b)
- Resolved turbulent fluxes compensate for the reduced parameterized fluxes (Fig. 2a, 2b)
- Vertical motion is triggered by increased resolved fluxes
- Number and intensity of explicit convective cells is considerably increased (see Fig. 2c, 2d)
- Convective precipitation in COSMO-2 is clearly intensified by reduction of asymptotic turbulent length scale I_{∞} (see Fig. 2e, 2f)
- Simple reduction of I_m does not lead to better precipitation forecasts
- Future adaptation of turbulence parameterization is needed to take into account that explicit computation of convection strongly depends on the balance between parameterized and resolved turbulent motion

Conclusions

- Under synoptically driven situations COSMO-7 and COSMO-2 show a similar QPF performance
- COSMO-2 can in principle predict convective precipitation more realistically than COMSO-7
- Prediction of convection in COSMO-2 suffers from missing of convective cells, in particular in region with low orographic forcing.
- Future adaptation of the turbulence parameterization scheme can potentially remedy this effect.

Summer

convection

Precipitation forecasts of summer convection differ significantly between COSMO-7 and COSMO-2 (see right): The convection scheme of COSMO-7 results in unrealistically widespread precipitation patterns COSMO-2 produces reasonable structures, but tends to initiate too little convection.

Sensitivity experiments were performed in COSMO-2 to find model components which can remedy the deficiency of missing convection: Tests on shallow convection, microphysics and surface fluxes should minor impact, in contrast to changes in the numerics and the turbulence scheme (see right and bottom).

Impact of numerical time integration schemes

A sensitivity study shows the influence of numerical time integration on explicit computation of convective precipitation

- 2-time-level Runge-Kutta scheme is able to predict up- and downdraft systems in convective cells (see Fig. 3a)
- 3-time-level Leapfrog computes a noisy vertical wind pattern in upper troposphere where hardly any cells can be identified (see Fig. 3b)
- deep convective clouds consisting of mainly snow and graupel can develop with Runge-Kutta scheme but not with Leapfrog scheme (see Fig. 3c, 3d)
- Runge-Kutta scheme computes higher intensities of convective precipitation compared to Leapfrog scheme (see Fig. 3e, 3f)
- Leapfrog scheme is not suitable for explicit computation of convection in COSMO-2. Runge-Kutta scheme should be used instead

Runge-Kutta Leapfrog

tropospher wind at

Gal

Vert

conter

é

/ertical

