Convection-resolving model simulations of convective precipitation in low-mountain terrain Jörg Trentmann, Heini Wernli Ulrich Corsmeier, Pieter Groenemeijer, Jan Handwerker, Martin Kohler, Andreas Wieser, Andreas Behrendt, Marcus Radlach, Volker Wulfmeyer

PRINCE

Prediction, *i*dentification and tracking of *c*onvective cells

Goal: Observe the pre-convective environment and the evolution of convective cells in orographically-structured terrain.

METEOSAT, 12 July 2006, 1130 UTC

2-JUL-2006

Field experiment to investigate convection, July 2006. A collaboration between the FZK-IMK, University Hohenheim, University Mainz, DLR. Mobile (aircraft, soundings) and stationary (Radar, LIDAR) instrumentation

12 July 2006: local formation of single convective cells under weak synoptic forcing

MODIS, 12 July 2006, 1030 UTC

http://rapidfire.sci.gsfc.nasa.gov/realtime

Radar Animation, 12 July 2006, 09 – 13 UTC

Jan Handwerker, IMK Karlsruhe

Single convective cells:

- inside Murg valley and along mountain ridge
- 10 to 13 UTC
- reaching up to 14 km

COSMO-Model setup

- Operational numerical weather prediction model
- Grid point spacing: approx. 2.8 km
- No parameterisation of deep convection, main motions/processes of deep convection are considered explicitly
- Hourly boundary conditions from LME Analysis
- Start of the model simulations at 07 UTC

Model Evaluation

10-hour precipitation sum: 09 to 19 UTC

- location of convective precipitation well represented
- intensity of precipitation is underestimated compared to gauge-adjusted radar observations

A process-based model evaluation.....

Boundary Layer Structure

Observations from Brandmatt (09 UTC)....

Observations

3 layers:

- < 1.2 km: stable, moist
- 1.2 2.5 km: well mixed
- > 2.5 km: stable, dry

Model

- Vertical structure well reproduced
- Slightly (approx. 1 K) too cold

Boundary Layer Structure, temporal evolution

LIDAR particle backscatter coefficient, Hornisgrinde

M. Radlach, A. Behrendt, V. Wulfmeyer, Uni Hohenheim

Radlach et al., ACPD, 2007

Boundary Layer Structure, temporal evolution

black: $d\Theta/dz > 4$ K/km, red: cloud cover > 50 %

- weakening of the inversion simulated realistically
- no cloud formation in the mixed layer
- overall realistically evolution of the boundary layer

Boundary Layer Structure, zonal wind

Radial component of the zonal wind from Windlidar Hornisgrinde, 0930 UTC (relative to the LIDAR)

- average zonal-wind about 2.5 m s⁻¹ from East
- upslope winds from the Rhine valley in the lowest 300 m

Boundary Layer Structure, wind field

- Model result:
- Upslope wind at 1245 UTC south of Hornis-

 - 3 hours later than observed

Wind Field, Upslope wind

Vertical cross section, zonal wind, 1245 UTC

- easterly wind in
- 5 lower 2 km
- strong westerly
- upslope wind
- vertical wind along
- .o mountain crest

Dynamical forcing from lower levels

Horizontal convergence, 1245 UTC

Dynamical forcing from lower levels

Radar reflectivity, 10 m-wind 1315 UTC

Convection develops in regions with elevated horizontal convergence

Temporal evolution of the convective activity

Surface wind, radar reflectivity, 1230 – 16 UTC

Color coding: topography arrows: surface wind white contours: radar reflectivity

Temporal evolution of the convective activity

Simulated surface wind, radar reflectivity, 1330 UTC

Color coding: topography arrows: surface wind white contours: radar reflectivity

Conclusions and Outlook

- Valuable data was collected during PRINCE to investigate convection initiation
- The COSMO-Model realistically represents the processes leading to the initiation of convection
- The boundary layer structure and its evolution was successfully captured by the model
- Upslope winds initiate horizontal convergence and vertical motions
- Initiation of convection delayed in the model simulation, amount of precipitation underestimated
- Further studies, e.g. based on COPS, will provide further insights on convection initiation and model performance under convective situations

Thank you!