COSMO Simulations of a Strong Hailstorm with an Advanced 2-Moment Microphysical Scheme

Heike Noppel*, Ulrich Blahak*, Axel Seifert+, Klaus D. Beheng*

^{*} Inst. für Meteor. und Klimaforschung, Universität / Forschungszentrum Karlsruhe ⁺ German Weather Service, Offenbach

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft SRNWP Workshop, Bad Orb, 2007

Motivation

ANTISTORM objectives:

• Study the impact of aerosols on severity of storms in Europe

develop models that should help to improve forecast of such storms

Case study:

Severe hailstorm in Villingen-Schwenningen 28/06/2006

- large hail stones and extreme precipitation rates
- considerable damage, >100 people got hurt, one man drowned

Numerical Model:

- COSMO by the German Weather Service (version 3.19.x)
- extended 2-moment scheme by Seifert & Beheng (2006) for cloud microphysics
 - new scheme for nucleation of cloud droplets based on look-up tables by Segal & Khain (2006)
 - additional particle class "hail", hail particles (embryos) are generated by
 - → the upper part of a freezing rain drop distribution
 - → graupel particles in "wet growth" mode

Model and Model Setup

Initialisation / Setup:

- horizontal resolution: 1 km
- initialization by COSMO-DE analysis (2.8 km, 12 UTC)
- boundary conditions: COSMO-DE forecasts (every hour)
- model domain: 291 x 291 grid points
- 4 different classes of CCN concentration:
 - $(\rightarrow N_{drop} = 100 \text{ cm}^{-3})$ → IOW
 - → intermediate ($\rightarrow N_{drop}$ = 300 cm⁻³)
 - → high
 - → very high
- $(\rightarrow N_{drop} = 1000 \text{ cm}^{-3})$ $(\rightarrow N_{drop} = 2000 \text{ cm}^{-3})$

intermediate CCN concentration

accumulated precipitation

[var] = 0 ... 43.94

12-24 UTC

10-22 UTC

29.06.2006 00:00:20

56.0-	60.0
52.0-	56.0
48.0-	52.0
44.0-	48.0
40.0-	44.0
36.0-	40.0
32.0-	36.0
28.1-	32.0
24.1-	28.1
20.1-	24.1
16.1-	20.1
12.1-	16.1
	12.1
4.1-	
0.1-	4.1

IMK Karlsruhe PCNT:73 DD/HH:MM: 0/11 START/STOP TIM 28.06.2006/12:

(c) Forschungs: trum Karlsruhe

Aneichfaktor =

the same, but with the standard 1-moment scheme

acc. precipitation 12-24 UTC by graupel and hail

CCN Impact

max. mass density cloud droplets

rain drops

CCN Impact

Maximum number density of large hail particles (D>25mm)

(Calculated from the predicted moments and the assumed generalized gamma-distribution for $z \le 2$ km amsl)

 COSMO with the 2-moment microphysics scheme generates a convective storm that resembles the observed one quite well (even though some hours late)

✓ the model produces large hailstones (D > 25 mm) and a realistic amount of precipitation by hail

CCN concentration has a strong impact on precipitation rates

impact especially strong on precipitation by frozen hydrometeors

✓ general conclusion whether increased CCN concentration increases or decreases the severity of storm is not possible

The End

