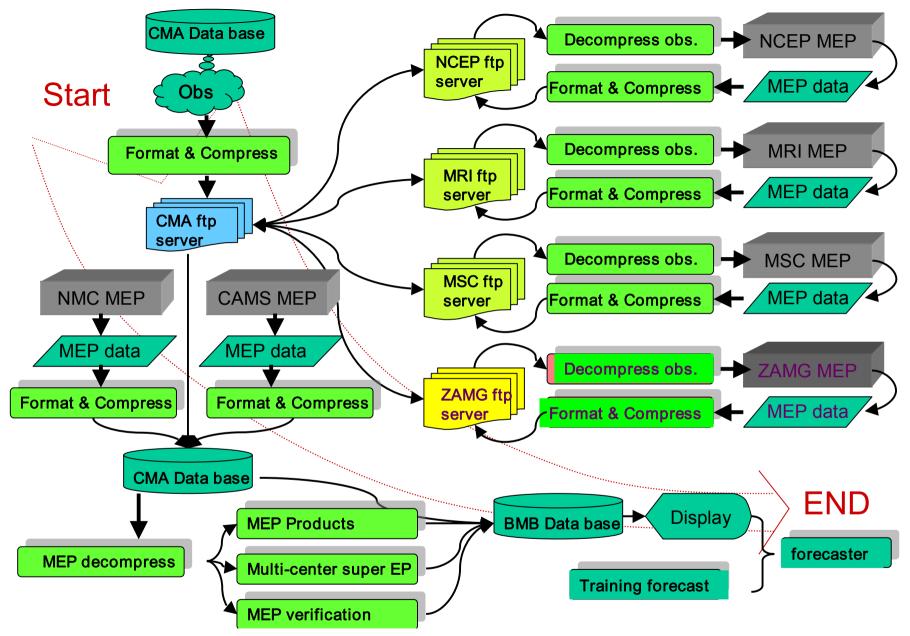
7th International SRNWP-Workshop on Non-Hydrostatic Modeling, Bad Orb, 5 -7, November 2007

Beijing 2008

# Mesoscale ensemble prediction trial for the WWRP Beijing 2008 Research and Development Project

K. Saito, H. Seko\*, M. Kunii and M. Hara (Meteorological Research Institute/JMA) T. Hara and M. Yamaguchi (Numerical Prediction Division/JMA)


- 1. Introduction
- 2. Tier-1 meso-EPS at MRI -First experiment 2006-
- 3. Advances on Tier-1 EPS at MRI/JMA -Second experiment 2007-

# What is the Beijing 2008 FDP/RDP (B08FDP/RDP) ?

- WWRP Beijing 2008 FDP/RDP is a WWRP short range weather forecasting research project which is conducted corresponding to the Beijing Olympic Games of August 2008.
- Approved as a WWRP research project succeeding to the Sydney 2000FDP.
- The project is divided into 2 components:
   FDP component: Forecast Demonstration for FT=0-6 hour forecasts based on nowcasting
- RDP component: Research and Development for FT=6-36 hour forecasts based on Mesoscale ensemble prediction.

# Goals of the RDP Project

- To improve understanding of the high-resolution and very short range probabilistic prediction processes through numerical experimentation
- To share experiences in the development of the real-time MEP system
- To study and develop adequate methods on the assessment of the capability and forecast skill of MEP systems
- To demonstrate how MEP system can improve quality of forecasts compare with deterministic run and/or Global EPS
- To train forecasters to apply ensemble forecasting products & support a better meteorological service for 2008 Olympic game
- To setup shareable database for future research in the community



The data flow chart of B08RDP between CMA and participant countries are setup completely

# The 2006 Tier-1 preliminary experiment 24 July – 24 Aug 2006

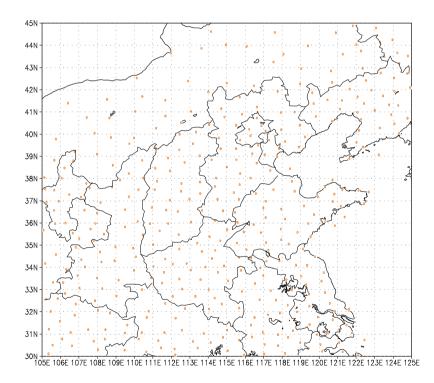
|          | Model              | Members | Initial perturbations |  |
|----------|--------------------|---------|-----------------------|--|
| NCEP     | WRF-NMM<br>WRF-ARW | 10      | Breeding              |  |
| MRI/JMA  | JMANHM             | 11      | Global EPS (BGM)      |  |
| MSC      | GEM                | 16      | Global SV             |  |
| NMC/CMA  | WRF-ARW            | 15      | Breeding              |  |
| CAMS/CMA | GRAPES             | 9       | Breeding              |  |

How to do verification of the first test

The parameters to be verified are 2m temperature and probability of precipitation.

The verification time interval is 6 hours, based on the condition of observation data collected;
After Yinglin

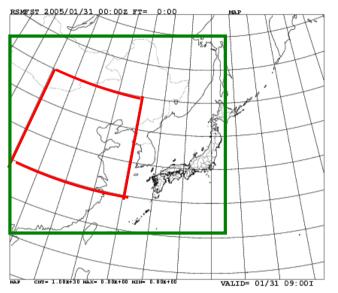
After Yinglin (2006)


# **Comparison with Observation data**

## The 400 stations are taken as a core subset of stations;

which consists of all national commutative stations, majority of them belong to the national basic synoptic stations;

And 239 stations in which have a long-term historical record;


The data quality of them is more reliable, and the data from them are taken as a core subset of observation data, and were used in this test.



Core subset of observation (400 stations)

After Yinglin (2006)

# Tier-1 meso-EPS of MRI/JMA in the 2006 experiment

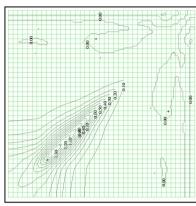


Green: Test Domain (3300km\*x3000km) \*slightly smaller than recommended domain

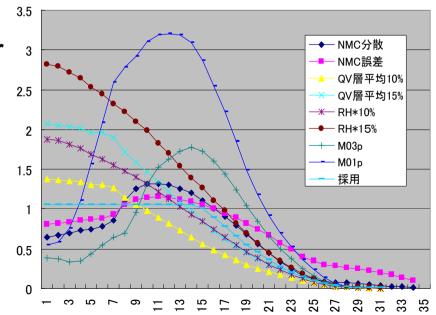
Red: Domain of common grid for verification (20 deg x15 deg)

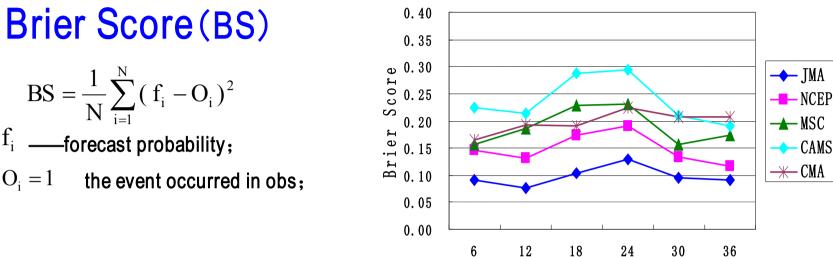
| Forecast                    | 36 hour, 12 UTC, 11 members                |  |  |
|-----------------------------|--------------------------------------------|--|--|
| Horizontal mesh             | 221 x 201 (DX=15 km), Lambert<br>conformal |  |  |
| Vertical levels             | 40 terrain following, DZ=40-1180m          |  |  |
| Initial condition<br>(CNTL) | JMA regional 4D-Var analysis at 12<br>UTC  |  |  |
| Lateral boundary            | JMA RSM forecast                           |  |  |
| Initial perturbation        | JMA weekly global EPS (normalized)         |  |  |
| Dynamics                    | HE-VI, DT=1 min, Dt=17 sec                 |  |  |
| Moist physics               | 3 ice bulk microphysics                    |  |  |
| Convection                  | Kain-Fritsch (modified at JMA)             |  |  |
| Turbulence                  | Diagnostic TKE                             |  |  |
| Ground temperature          | 4 soil, initialized by RSM                 |  |  |

11 members 36 hour EPS forecast are conducted for 1-24 August in every morning at MRI, with the increment using the normalized global EPS perturbation.


# Normalization of perturbation of Global EPS

Back ground error for Meso 4D-Var: PS: 0.7 hPa

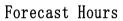

U,V: about 2 m/s in lower troposphere about 3.5 m/s around jet stream T: about 0.8K in lower troposphere about 1K in upper troposphere RH: about 10 % in lower troposphere about 15 % in upper troposphere


80 % of background error was used as the rough estimation of the analysis error PS: 0.6 hPa rU, rV: 1.8 m/s\*(Kg/m<sup>3)</sup> q: 0.7 K Qv: 12% of RH, 8% of RH at 850 hPa

Perturbation is normalized if its RMS exceeds above values in each level.



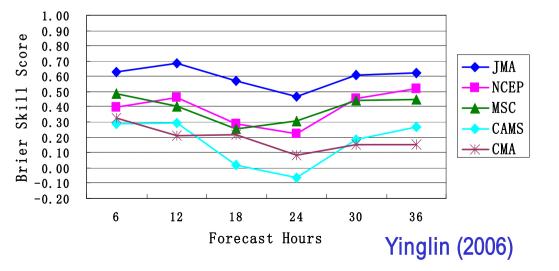
Vertical error covariance obtained by NMC method in Meso 4D-Var

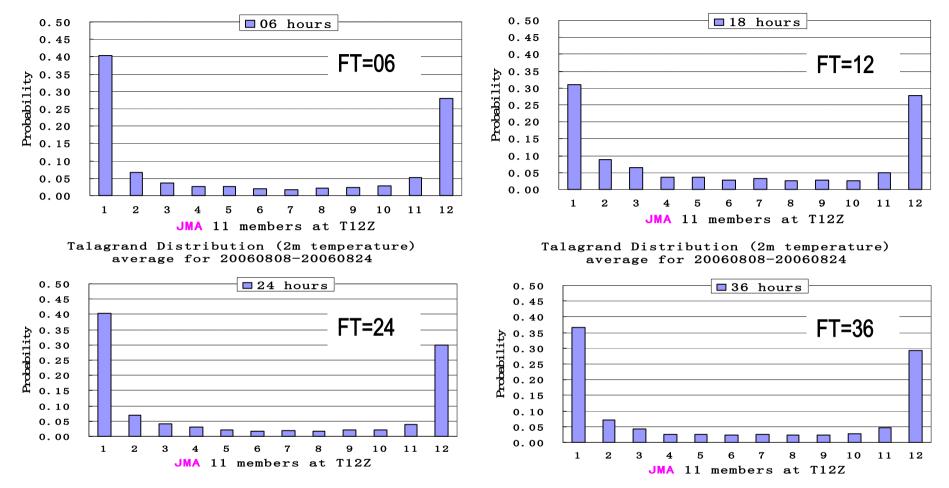





#### Probability Precipitaion (>0.1mm) BS Average for 22060808-20060824

BS =  $\frac{1}{N} \sum_{i=1}^{N} (f_i - O_i)^2$  $f_i$  —forecast probability;


the event occurred in obs;  $O_{i} = 1$ 




Probability Precipitaion (>0.1mm) BSS Average for 22060808-20060824

## Brier Skill Score(BSS)

BSS=1-BS / BSclim





#### Talagrand Distribution (2m temperature) average for 20060808-20060824

#### Talagrand Distribution (2m temperature) average for 20060808-20060824

# Talagrand distribution of JMA/MRI(T2m)

There are many obs. outside of forecast range.

After Yinglin (2006)

# Main changes of MRI/JMA in 2007 experiment

- 1) Latest version of JMA-NHM was employed.
- 2) Domain was enlarged and shifted to westward.
- 3) Global targeted SV method was adopted as the initial perturbation method.
- 4) Initial soil temperatures are perturbed.

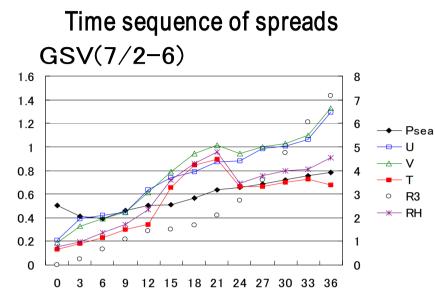
# Test of alternative schemes for initial perturbation

#### 1) JMA one-week EPS (WEP)

Perturbation of JMA's operational one week global EPS (TL159L40) is normalized with the statistical analysis error. Used in the 2006 experiment.

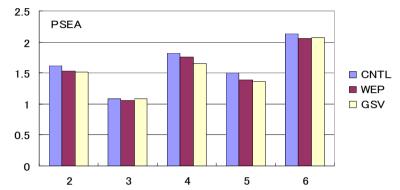
### 2) SV method using JMA-NHM (MSV)

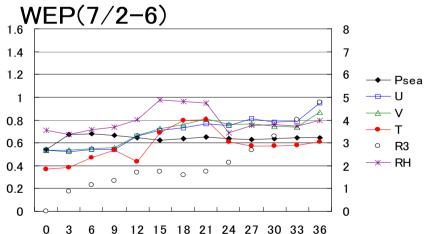
SV (30kmL40) is given by the Lancios method using TL/ADJ models of JMA-NHM (developed for the operational nonhydrostatic Meso-4DVAR).

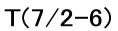

#### 3) BGM method using JMA-NHM (MBD)

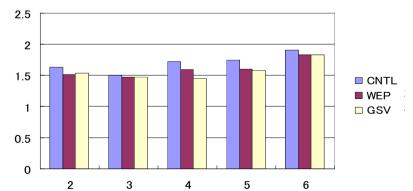
Initial seed by JMA operational one-week EPS is bred by 15kmL40 NHM with tow 12 hour breeding cycles.

#### 4) Global targeted SV method (GSV)


Global moist SV method developed for the JMA's typhoon EPS (T63L40; to be in operation 2008). Final norm is targeted to the common verification area in B08RDP.

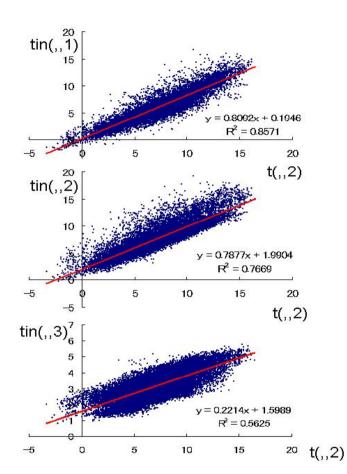

# GSV vs. WEP



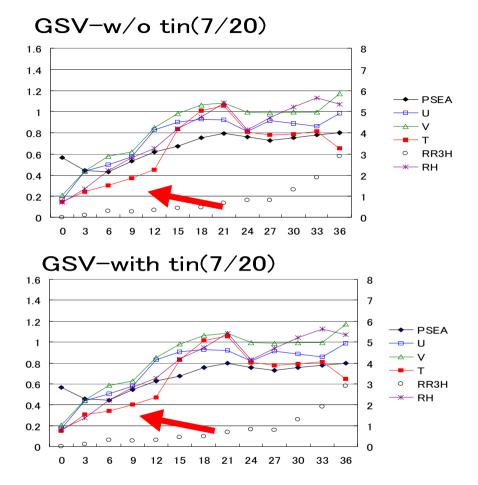


#### RMSE (FT=24) against initial

#### PSEA(7/2-6)







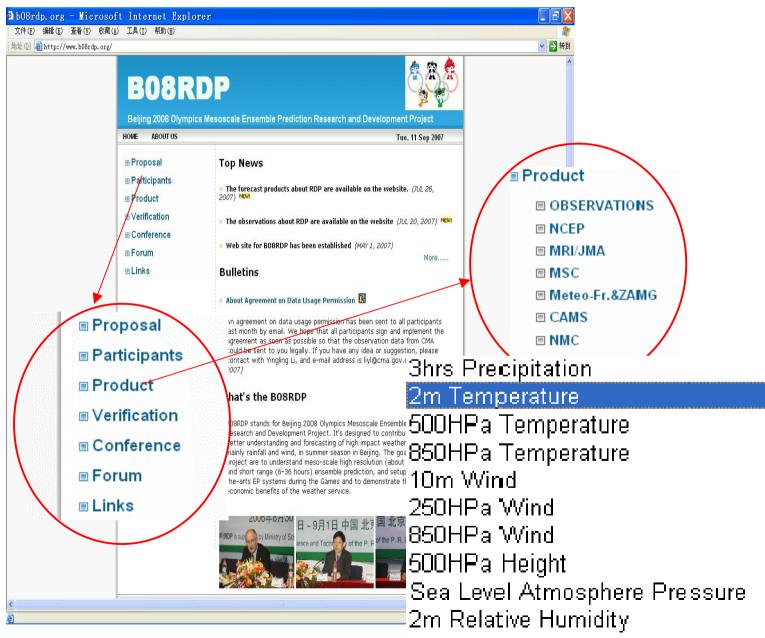

Spreads increase with time. RMSEs of Ens mean are smaller than WEP.

# Initial perturbation in soil temperatures



Relationships between simulated soil temperatures and the lowest level atmospheric temperatures. Perturbations from climatological temperatures at FT-24.




Spread of 2m temperature is slightly increased with the initial perturbation in soil temperature, though the effect is not large.

# Tier-1 MEP systems 2007

| Participants        | Model              | IC                    | IC perturbation       | LBC                      |
|---------------------|--------------------|-----------------------|-----------------------|--------------------------|
| NCEP*               | WRF-NMM<br>WRF-ARW | NCEP Global<br>3DVAR  | Breeding              | Global EPS               |
| MRI/JMA             | JMA-NHM            | JMA Regional<br>4DVAR | Targeted<br>Global SV | JMA Regional<br>Forecast |
| MSC                 | GEM                | MSC Global<br>4DVAR   | Targeted<br>Global SV | MSC<br>Global EPS        |
| ZAMG &<br>Meteo-Fr. | ALANDIN            | ECMWF Global<br>4DVAR | ECMWF Global<br>SV    | ECMWF Global<br>EPS      |
| NMC/CMA             | WRF-ARW            | WRF-3DVAR             | Breeding              | Global EPS               |
| CAMS/CMA            | GRAPES             | GRAPES-3DVAR          | Breeding              | Global EPS               |

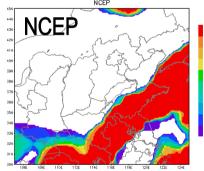
\*EP system of NCEP is as of the 2006 experiment: NCEP submitted results by global EPS in the 2007 experiment

## Website: www.b08rdp.org

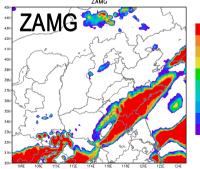


## **Example of Participants' forecast** Probability of RR3h>1mm; 8/10 15UTC (FT=3hur)

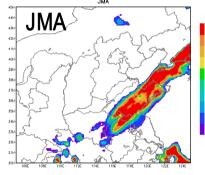
4.0



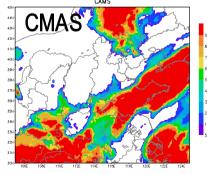

10 ~ 19.9

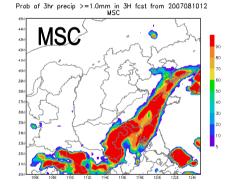

3-hour precipitaion (mm) at 15Z10AUG2007

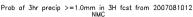
онр mm 203.2 152 4 127.0 114.3

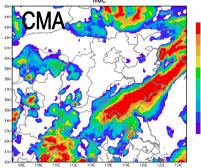

Prob of 3hr precip >=1.0mm in 3H fcst from 2007081012




3hr precip >=1.0mm in 3H fcst from 2007081012



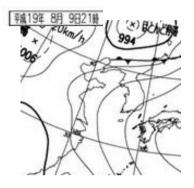


Prob of 3hr precip >=1.0mm in 3H fcst from 2007081012



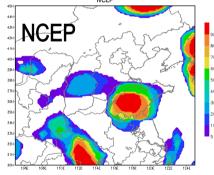

Prob of 3hr precip >=1.0mm in 3H fcst from 2007081012 CAMS



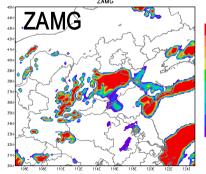


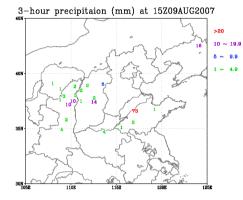




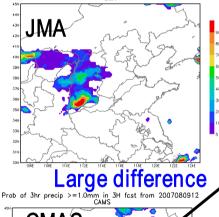


## Model of all participants forecasted well the rainfall region of stationary front.

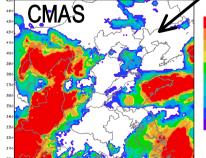
China (CMA, CAMS), U.S(NCEP), Canada (MSC), Austria/France (ZAMG)


## **Example of Participants' forecast** Probability of RR3h>1mm; 8/9 15UTC (FT=3hur)

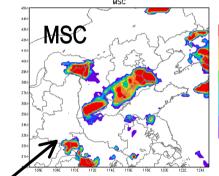



Prob of 3hr precip >=1.0mm in 3H fcst from 2007080912

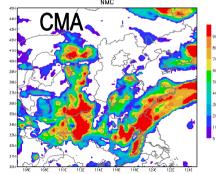




Prob of 3hr precip >=1.0mm in 3H fcst from 2007080912





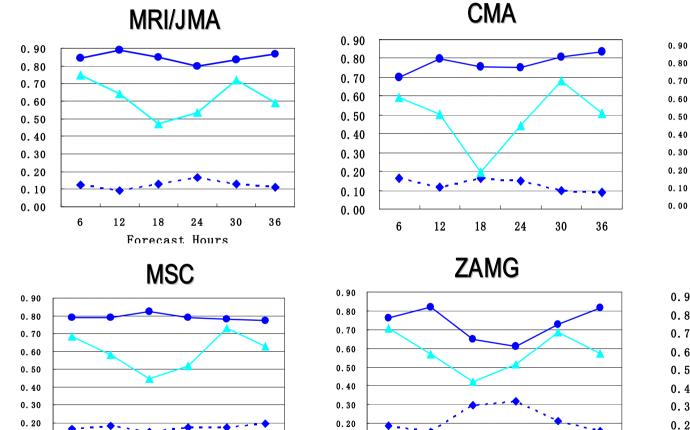

Prob of 3hr precip >=1.0mm in 3H fcst from 2007080912






Prob of 3hr precip >=1.0mm in 3H fcst from 2007080912 MSC




Prob of 3hr precip >=1.0mm in 3H fcst from 2007080912



## Forecast of rainfall due to the weak confluence was largely diverged

## Probability Precipitation BS(BSS) at 12 UTC Average for 20070724-20070831





0.10

0.00

6

12

18

Forecast Hours

24

30

36

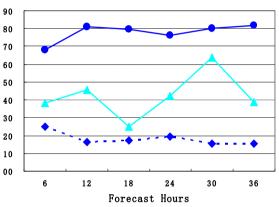
0.10

0.00

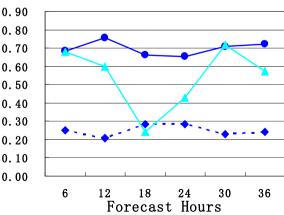
12

6

18

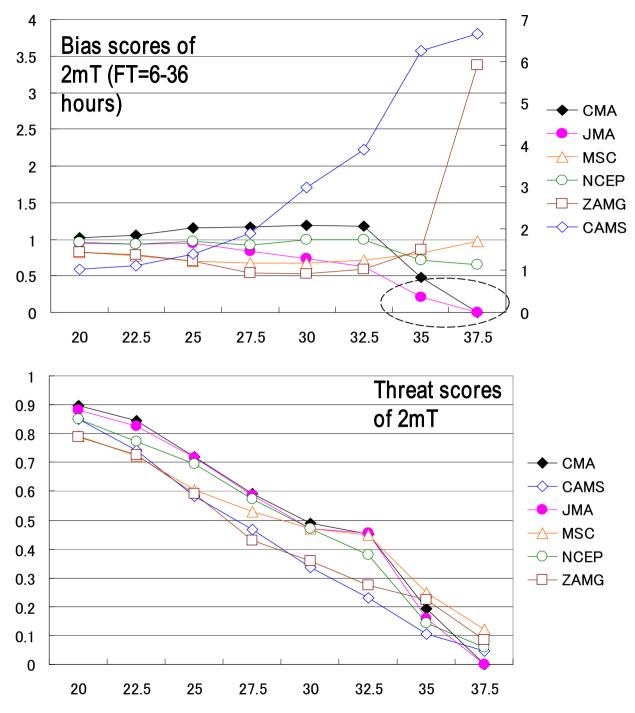

Forecast Hours

24


30

36

CAMS








After Y. Li (2007)

Preliminary verification of ensemble mean for 7/26-8/5



# Subjects of MRI ensemble model for the 2008 experiment

## Forecast model

- Amelioration of the underestimate of convective rain (especially in initial start-up and diurnal ones)
- Amelioration of the underestimate of (the maximum) temperature
- Use of the hybrid vertical coordinates (operationally, already implemented)

## Initial condition

• Application of the Meso 4DVAR analysis to Beijing area

### Perturbation

- Test of other/modified methods for initial perturbation method including LETKF
- Implementation of perturbation in the lateral boundary condition