

Evaluating the representation of clouds and precipitation in non-hydrostatic atmospheric models for the Belgian region

Nicole van Lipzig¹, K. Van Weverberg¹, T. Steegmans¹, I. Meirold-Mautner, S. Crewell², L. Delobbe³, G. Haase⁴

¹KULeuven (Belgium), ²Universität zu Köln (Germany), ³Royal Meteorological Institute of Belgium, ⁴Swedish Meteorological and Hydrological Institute

Seventh international SRNWP-workshop on non-hydrostatic modelling Bad Orb 5-7 November 2007

Integrations with ARPS

Integrations with COSMO2.8

Comparison with MODIS

Nicole van Lipzig¹, K. Van Weverberg¹, T. Steegmans¹, I. Meirold-Mautner, S. Crewell², L. Delobbe³, G. Haase⁴

Contents:

Introduction Methods: radar reflectivity, cloud optical thickness Model description Description of the cases Results Conclusions

Introduction

QUEST (Crewell et al.)

Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations See also poster Thorsten Reinhardt et al

Introduction

Our region of interest

C-band weather Radar Wideumont (RMI)

- Scans at 10 elevation angles each 15 minutes (0.5 17.5 $^{\circ}$)
- Horizontal resolution is 500 m in range and 1 degree in azimuth

Methods: Radar reflectivity

Based on Smith et al., 1975 Marshall-Palmer-type size distribution: $N_k(D) = N_{0k} \exp(-\lambda D)$ (1)

$$Z_k = \int_0^\infty N_k(D) D^6 dD \tag{2}$$

Radar reflectivity factor for rain = $\operatorname{cnt}_1 \cdot \frac{(\rho q_r)^{\ell/4}}{N_r^{3/4} \rho_r^{7/4}}$ (3)

Radar reflectivity factor for dry snow =
$$\operatorname{cnt}_2^* \cdot \frac{(\rho q_{s-})^{7/4}}{N_s^{3/4} \rho_i^{7/4}}$$
 (4)

Radar reflectivity factor for wet snow = $\operatorname{cnt}_1 \cdot \frac{(\rho q_{s+})^{7/4}}{N_s^{3/4} \rho_s^{7/4}}$ (5)

Radar reflectivity factor for hail = $\operatorname{cnt}_3 \cdot \left(\frac{(\rho q_h)^{7/4}}{N_{\star}^{3/4} \rho_{\star}^{7/4}}\right)^{0.93}$ (6)

* Taking into account the ratio of dielectric factors for water and ice

An illustration: Precipitating hydrometeors in ARPS

An illustration: Radar reflectivities in ARPS

Developing a method to evaluate cloud optical thickness using satellite remote sensing (Van Lipzig et al., 2006; Schröder et al, 2006)

12 Aug 2004 MODIS overpass 10:55UTC

Clouds in atmospheric models affect:

- 1: precipitation: q^{c,} qⁱ
- 2: source/sink of heat related to phase changes: q^{c,} qⁱ
- 3: radiation: optical properties

Radiation code LM (Ritter and Geleyn, 1992)

Methods: cloud optical thickness

Clouds in atmospheric models affect:

- 1: precipitation: q^{c,} qⁱ
- 2: source/sink of heat related to phase changes: q^{c,} qⁱ
- 3: radiation: optical properties

Radiation code other models (e.g. ECMWF)

 $\delta = rac{3
ho_{LW}\Delta z}{2r_{
m e}}$ With r_e constant

Advanced Regional Prediction System (ARPS): Non-hydrostatic mesoscale model (Xue et al. 2000, 2001), developed at CAPS

COSMO2.8: Non-hydrostatic mesoscale model (Doms et al., 1999)

ARPS (integrations by Kwinten Van Weverberg): Double one-way nested grid with successive Δx of 9 km and 3 km. Smallest model domain centered over Belgium. Boundary and initial conditions derived from ECMWF operational analysis. 50 vertical levels

No convection parameterization in smallest domain, Kain-Fritsch convection parameterization larger domain

Lin-Tao microphysics (including rain, snow, hail, cloud ice, cloud water)

COSMO2.8 (integrations by Ingo Meirold-Mautner): Version 3.21 integrations centered above Belgium, $\Delta x = 2.8$ km, 160x160 grid points, 50 levels, prognostic variables for cloud, ice, rain, snow, graupel, driven by COSMO-LME analyses

Stratiform precipitation case 23/11/2006

Dynamically driven convective case

01/10/2006

Thermodynamically driven convective case

28/07/2006

Results: October case

Radar 15:00

ARPS 15:00

MODIS 10:30

COSMO 9:00

ARPS 9:00

MODIS 10:30

COSMO 9:00

ARPS 9:00

Results: November case

10 km

80

Results: November case

MODIS 9:55

COSMO 9:00

ARPS 9:00

Results

Guidelines for model evaluation

- 3D radar volume data in combination with satellite data give useful complementary information for model evaluation
- By looking at volume data, additional information is available on:
 - the size of the convective cells
 - changes in the variability with height
- **ARPS** reflectivity very sensitive to amount of hail; this explains most discrepancies between radar and ARPS; too high hail amount just above the freezing level
- COSMO2.8 version 3.21:
 - precipitating hydrometeors are separated
 - cloud optical thickness is too small for all these cases