Atmospheric kinetic energy spectra from high-resolution GEM models

Bertrand Denis

NWP Section Canadian Meteorological Centre Environment Canada

Environment Environnement Canada Canada

SRNWP 2009 – Bad Orb, Germany

Outline

- Introduction
 - What we are looking for
- Methodology
- Results
 - -3 and -5/3 spectral slopes
 - Effective resolution
 - Spin-up time
 - Diurnal cycle
 - Seasonal and Domain impacts
 - Vertical velocity vs total KE
 - GEM-REG 15 km vs GEM-LAM 2.5 km
- Conclusions

Introduction

Methodology

- Spectral decomposition using 2D-DCT (Denis et al. 2002, MWR)
- Average between 700-200 hPa
- Season averages
 - Summer: June-July-August 2006
 - Winter: January-February-March 2007
- Domains (1000x1000 km²) over two Canadian regions
 - West : British-Colombia
 - East: Southern Ontario-Quebec
- CMC-RPN Models
 - GEM-REG 15 km
 - GEM-LAM 2.5 km

Methodology – Model description

GEM = Global Environmental Model

CMC multi-scale model

- Global constant resolution (regular lat-lon grid) (GEM-Global)
 - Seasonal forecasts / Climate simulations (100 km)
 - Medium-range EPS (100 km)
 - Medium-range deterministic forecasts (33 km)
 - Global variable resolution (stretched grid)
 - North America climate simulations (55 km)
 - Short-range deterministic forecasts (GEM-Regional 15 km)

- Limited-area (LAM) constant resolution lat-lon grid
 - North America climate simulations (15-55 km)
 - Short-range EPS (33 km)
 - Short-range high-res. deterministic forecasts (GEM-LAM 2.5/1.0 km)
 - Urban emergency response (250 m)

Methodology – Model descriptions

GEM characteristics (2006-2007 version)

- 3D Semi-lag, fully implicit, two-time level (Crank-Nicholson)
- Arakawa-C horizontal grid
- 58 unstaggered levels / top 10 hPa (Laprise mass hybrid vertical coordinate)

		<u>GEM-REG 15 km</u>	<u>GEM-LAM 2.5 km</u>
Time step	:	7.5 min.	1 min.
Horizontal Diffusion	:	implicit del ⁶ (0.02)	implicit del ⁴ (0.2)
Non-hydrostatic ?	:	no	yes, fully compress.
Deep convection param.	:	Kain-Fritsch	- none -
Shallow convec. Param.	:	Kuo-transient	Kuo-transient
Grid scale condensation	:	Sundquist	Kong & Yau micro.
Assimilation	:	3D-VAR	IC from GEM-REG

Methodology – Model domains

Methodology – Model domains

West domain

East domain

Methodology – model runs set up

Results: -3 and -5/3 slopes

Results: effective resolution

Results: Spectra from WRF

From Skamarock, MWR 2004

Results: spin-up

Results: spin-up

Results: Domain and seasonal impacts

Results: W component vs total KE

Results: 2D-DCT vs 2D-DFT with detrending

Conclusions

- -5/3 spectral dependency and transition
 - Generated by the LAM 2.5 km, not by the REG 15 km
- Effective resolution
 - LAM 2.5 km : ~17 km
 - REG 15 km : ~105 km
- Spin-up time of LAM 2.5 km small scales
 - ~ 3h

• Diurnal cycle

- Convectively driven (summer)
- Participates in the -5/3 slope as Lilly (1983) suggested
- Influence of the domain (geophysical forcing)
 - No major impact during summer conditions
 - West domain exhibits higher level of small-scale energy in winter
- Vertical velocity energy vs total KE
 - LAM 2.5 km near to 3D turbulence at scales < 10 km
 - REG 15 km never close to 3D turbulence

Thank you!

Environment Environnement Canada Canada