
Ladies and gentlemen. Today, I will be talking about nohydrostatic atmospheric 

modeling using a combined Cartesian grid. modeling using a combined Cartesian grid. 
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In this study, we are developing a new numerical model for ultra-high resolution 

simulations at horizontal grid intervals of less than 100 meters. First let me mention simulations at horizontal grid intervals of less than 100 meters. First let me mention 

briefly why we decided to conduct the present study. We consider that the 

representation of topography in models as one of the important issues for high 

resolution simulations, because an increase in horizontal resolution introduces steep 

slopes over mountainous and urban areas. However, the commonly used terrain 

following representation of topography induces large truncation errors around steep 

slopes. Thus we think that another representation method of topography is required 

for ultra-high resolution models, and we explore the development of an atmospheric 

model for simulating flows over complex terrain including steep slopes. 
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So first, we take a look at the commonly-used terrain-following approach. This 

approach is used in many models including MM5, WRF, NICAM and so on. Here, approach is used in many models including MM5, WRF, NICAM and so on. Here, 

equations are discretized on a grid that conforms to the lower boundary. The main 

advantage of this approach is that the imposition of the lower boundary condition is 

greatly simplified. However, horizontal gradient computation on a terrain-following 

grid is essentially subject to truncation errors due to nonorthogonal coordinates. In 

particular, inaccurate evaluation of the pressure gradient leads to artificial circulations 

around steep slopes. 
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For example, two-dimensional numerical simulations of flow over a mountain using a 

terrain following model were performed by Satomura. Two mountains were used, terrain following model were performed by Satomura. Two mountains were used, 

one was a gently sloping bell-shaped mountain and the other was a semi-circular 

mountain which had steep slopes at the foot. The results of vertical velocity fields are 

shown here. In the case of the bell-shaped mountain, the terrain following model 

reproduced smooth and accurate mountain waves. On the other hand, in the case of 

the semi-circular mountain, the reproduced vertical velocity field was discontinuous 

because of the truncation errors due to the slantwise intersection of grid lines around 

steep slopes. We cannot ignore these near-ground errors because they have a critical 

impact on predictions of clouds and rain. 
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So in the present study, we developed a new two-dimensional nonhydrostatic 

atmospheric model using Cartesian coordinates instead of using terrain-following atmospheric model using Cartesian coordinates instead of using terrain-following 

coordinates. The name of our model is “Sayaca-2D”. “Sayaca” is a Japanese girl’s 

name. We used fully compressible quasi-flux form equations as governing equations. 

As a method for representing topography on a Cartesian grid, we used the shaved cell 

method based on finite-volume discretization. A unique feature of our model is that 

we used a cell-combining approach that employs a unique variable arrangement, 

which I will discuss in detail later. 

5



Now, I will explain some details of our model. The fully compressible equations in 

quasi-flux form used in this study are here. This form was developed by Satomura and quasi-flux form used in this study are here. This form was developed by Satomura and 

Akiba. Note that flux form equations are well suited to finite-volume discretization in 

view of conservation characteristics. 
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Next, I will explain the shaved cell representation of topography which was originally 

proposed by Adcroft et al.. This method approximates topography by a piecewise proposed by Adcroft et al.. This method approximates topography by a piecewise 

linear function, and spatial discretization is carried out using the finite volume 

method. In the finite volume method, equations are descretized by flux exchanges 

among adjacent cells as indicated by these arrows. Because the shaved cell method 

uses Cartesian coordinates, it does not suffer from truncation errors in terrain-

following models. 
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Now, there are two key points in shaved cell modeling. The first point is how to avoid 

severe restrictions on time steps due to small cut cells. Small cells cut by topography, severe restrictions on time steps due to small cut cells. Small cells cut by topography, 

such as this cell, require small time steps to satisfy the CFL condition. To keep the 

computational time reasonable, we should avoid this severe restriction on time steps 

in some way. 
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The second point is how to accurately evaluate the pressure gradient near the ground. 

In a shaved cell model, some pressure points are under the terrain surface. For In a shaved cell model, some pressure points are under the terrain surface. For 

example, if pressure points are arranged on cell centers, then the arrangement of 

pressure points looks like this. In this case, the circled points are in the fluid, but the 

crossed points are under the ground. We cannot obtain the pressure on underground 

points in a usual way, so it is possible that a cell near the boundary may not have all 

the pressure points necessary to calculate the pressure gradient. Though some 

models use a way to prognose the pressure values under the ground, we think that 

the use of the underground pressure values adversely impacts the flow dynamics 

near the ground. 
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To solve the difficulties that I have explained, our method uses a cell combining 

approach used in Computational Fluid Dynamics. Here, small cells whose volume is approach used in Computational Fluid Dynamics. Here, small cells whose volume is 

smaller than half of a regular cell are combined with a neighboring cell. We use both 

vertical and horizontal combinations depending on slope angles. Small cells on gentle 

slopes are combined with upper cells like this, and small cells on steep slopes are 

combined with either each right or left cell in the fluid like this. Combined cells

exchange flux with the adjacent cells in this way, and this combination process does 

not alter the model’s conservation characteristics. Therefore, this approach can avoid 

severe restriction by CFL criteria maintaining the rigid evaluation of cell volumes, and 

also keeps the conservation characteristics. 

10



In addition, we introduced a unique arrangement of variables to enable simple 

computations of the pressure gradient near the boundary without using underground computations of the pressure gradient near the boundary without using underground 

values. In our method, scalar variables are arranged on the cell centers. On the other 

hand, velocity components are arranged on the corners of the cells. Note that 

velocity components are not arranged on the intermediate points of the combined 

faces, such as these crosses. Then, velocity components on the boundary, indicated 

by green circles, are diagnostically evaluated. For example, when the non-slip 

boundary condition is imposed, all these velocity values are set to zero. When the 

free-slip boundary condition is imposed, a boundary velocity is extrapolated from the 

velocities surrounding the boundary point. Then, the pressure gradient is only 

computed on the velocity cells with centers in the fluid, indicated by red circles, and 

all cells corresponding to these centers retain rectangular shapes. So, the evaluation 

of the pressure gradient is straightforward. For example, the pressure gradient on this 

velocity cell is simply computed from these four pressure points. The calculation of 

the pressure gradient on the other velocity cells is performed in the same way. 

Therefore, with this method, the pressure gradient can be calculated simply, 

accurately and without any difficulty. Further, there is no need to combine velocity 

cells, thus we can keep the computational costs of combining cells as low as non-

staggered models.
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Other descriptions of our model are here. Green colored figures are characteristics of 

our model. The leap-flog scheme with the Asselin filter is used for the time our model. The leap-flog scheme with the Asselin filter is used for the time 

integration. We integrate everything explicitly. For the subgrid turbulence 

parametarization, 1.5 order closure model is used.

12



Now, let me talk about results. We performed two-dimensional numerical simulations 

of flow over a mountain using the developed model. Here, two mountains are used. of flow over a mountain using the developed model. Here, two mountains are used. 

One is a low bell-shaped mountain with gentle slopes. The other is a semicircular 

mountain which has very steep slopes at the foot. The constant horizontal velocity 

and Brunt-Vaisala frequency are specified for both cases. 
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This is the result in the case of the bell-shaped mountain after attainment of quasi-

steady state. The horizontal and vertical grid intervals that we used are 1 km and 50 steady state. The horizontal and vertical grid intervals that we used are 1 km and 50 

m, respectively. This shows the vertical velocity field calculated by our model, and 

this shows that by the linear theory. The vertical velocity calculated by the model 

agrees well with that in the analytical solution. 
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This is the momentum flux in our model normalized by that in the linear theory. It is 

nearly uniform from near the surface to 10 km, thus the momentum flux in model nearly uniform from near the surface to 10 km, thus the momentum flux in model 

agrees well with that in the linear theory. Thus we conclude that our model 

reproduces a sufficiently accurate flow over gentle slopes. 
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Next, this is the result in the case of the semicircular mountain after attainment of 

quasi-steady state. Here, both the horizontal and vertical grid intervals are 500 m.  quasi-steady state. Here, both the horizontal and vertical grid intervals are 500 m.  

This shows the vertical velocity field calculated by Sayaca-2D, and this shows that by 

the terrain-following model developed by Satomura. The vertical velocity field in the 

shaved cell model is clearly less noisy than that in the terrain-following model.
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Finally, this shows the potential temperature field in our model, and this shows the 

stream lines of the analytical solution given by Miles & Huppert. They are similar to stream lines of the analytical solution given by Miles & Huppert. They are similar to 

each other and it shows that our model reproduces an accurate flow over the semi-

circular mountain. Therefore, we conclude that our model can reproduce smooth and 

accurate flows over gentle as well as steep slopes, thus it is appropriate and 

sufficiently accurate for simulations of flow over complex terrain.
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Now, let me summarize my talk. In the present study, we developed a new non-

hydrostatic atmospheric model code-named “Sayaca-2D”. We use the shaved cell hydrostatic atmospheric model code-named “Sayaca-2D”. We use the shaved cell 

method as a representation method of topography on Cartesian grids, and use a cell 

combining approach to avoid severe restrictions on time steps. We devised our own 

unique arrangement of variables that greatly simplifies computations of the pressure 

gradient near the boundary. Two-dimensional numerical simulations of mountain 

waves were performed showing that our model reproduced smooth and accurate 

mountain waves over gentle as well as steep slopes, thereby demonstrating the 

advantage of the current method for flows over complex terrain. As for the future, we 

hope to upgrade this model into a three dimensional model as soon as possible. 

Thank you very much for your attention.
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In our method, the velocity components on the boundary, indicated by green circles, 

are diagnostically evaluated. When the non-slip boundary condition is imposed, all are diagnostically evaluated. When the non-slip boundary condition is imposed, all 

velocity values on the boundary are set to zero. With the free-slip boundary condition, 

boundary velocity values are extrapolated from velocities at red points. At this time, 

the component of the velocity that is tangential to the surface is preserved. For 

example, the velocity at the boundary point “A” is extrapolated from the velocities at 

points “B” and “C”. First, we calculate the velocity at point “P” above the normal 

direction to the surface at point “A” by linear interpolation between the velocities at 

points “B” and “C” as this, and calculate the boundary velocity at point “A” using this 

velocity like this. This part is the normal component of the velocity at point “P”, and 

subtract the normal component from the total velocity, then we can obtain the 

tangential component. We regard this tangential component as the boundary velocity. 

The other boundary velocities are calculated in the same way.  
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Horizontal gradient computation on a terrain-following grid essentially subject to 

truncation errors, because the horizontal gradient at this cell, for example, is truncation errors, because the horizontal gradient at this cell, for example, is 

calculated from the values at these neighboring cells, and the deviation from the 

exact horizontal direction causes the errors described as this. The steeper the slope, 

the larger the deviation, and the larger the errors. You can get details from this book, 

Thompson et al.. 
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In these equations, the advection terms are written in flux form. Flux form is superior 

to advective form because of the conservation of advected quantity. The advection to advective form because of the conservation of advected quantity. The advection 

terms in the conservation equation for potential temperature are not completely in 

flux form, so this form is classified as a “quasi-flux” from. By directly prognosing 

deviations from the hydrostatic variable, the dashed variables, this form has the 

advantage that it does not suffer from the cancellation error because of subtracting 

the hydrostatic variable from the nearly hydrostatic total variable.
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In this study, we are not concerned with long thin topography such as a sharp-pointed 

mountain or a steep v-shaped valley. For example, this sharp-pointed mountain cuts a mountain or a steep v-shaped valley. For example, this sharp-pointed mountain cuts a 

cell into two distinct pieces, and our method is not applicable to this situation. A way 

to handle long thin topography is to increase the resolution while keeping the shape 

of topography fixed like this to avoid topographic changes on the grid scale. 

However, this approach has not yet been implemented or tested in our model. We 

are still thinking about this problem.
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