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Conservation and high order

• �The Importance of Conserva'on

• The Importance of Maintaining Second or Third Order • The Importance of Maintaining Second or Third Order 

Accuracy: 

1. Bulls eyes at special points of the icosahedral grid

2. Big problems with sudden grid changes in 1-d

• Many models Use Grid Regularisation on the 

Icosahedron and a Smooth Vertical Grid Structure

Problems with Irregular Resolution can be Traced Back • Problems with Irregular Resolution can be Traced Back 

to First Order appoximations at Special Points

• Schemes with Uniformly Second or Third Order 

Approximation Have no Bulls Eyes and are Robust



Icosahedral Grids Rhomboidal Grid: hexagonal and 
pentagonal stencils and dual cells

• An Uniformly Third Order 
Scheme was implemented 
and produces no Bulls 
Eyes (MWR 136 (2008) pp 
2483,Steppeler and 
Ripodas)Ripodas)
• Are flux based 
conserving second 
or third order 
schemes possible ? 
(YES) 



No Diffusion, Forecasted Divergence After 2,5h



Solid Body Rotation



Homogeneous 

Adavactionadvection



Third Order Convergence of Shallow 

Water Model at Day 3



• Edges grid                              Edges grid

• Order3                                     Order 2                                                                  

Grid Stencils Baumgardner 

• Order3                                     Order 2                                                                  

Redundancy 19:10 Redundancy 7:6 or 6:6



High and low order mass formula

Spectral, spectral elements, finite elements:

Finite Difference:

∫=
dF

dxdensityofrepspectralelementmass o____

dxdxelementmass i∫ ≈= ρρ_

Question: is FD conservation possible with a 
high order approximation of the density 
equation?

dF

i∫



Definition of flux based 

conservation schemes
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Finite difference flux based conservation:
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How to define point fluxes 

Stencil: { }2,1,0,1,2 −−∈i
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Point flux definition:

Equation for the ai ,bi:

for all polynomial functions
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Simple example in 1-d
(Only for regular grids or the high resolution 

limit)

fp i + 1 = f i + 1
4 − ( f i + 2 + f i )

1
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Properties of flux based 

conservation schemes

• If the h1/2  are exactly computed by spectral method, the • If the h1/2  are exactly computed by spectral method, the 

flux based scheme is of order 2 at most

• If the h1/2  are computed by fourth order interpolation 

from the hi, the flux based scheme is of order 2 at most

• If h1/2 deviate from the exact value by more than order 

2, it is possible to define them in such a way to result 

into a 3rd or 4th order approximation of the density into a 3rd or 4th order approximation of the density 

equation. Such coarsely approximated fluxes are called 

point fluxes. 



• The example generalises to the regular

square and hexagon

• To derive similar point fluxes for irregular 

grids is not trivialgrids is not trivial

• The formula for the irregular grid to be 

given are not necessarily identical to that 

above when specialised to the regular case

• The grid regularisation procedures (spring • The grid regularisation procedures (spring 

dynamic ) are not necessary when using 

the Point fluxes for third or second order 

for the irregular grid



Irregular Pentagonal Cell

Mass Point

Flux Point
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Interaction 

stencil

Cell of Dual grid

0

5

3

2

t 5

t

t 2

Cell of Dual grid

The grid is called quasi regular, if stencil lines cut the sides 
of the dual cell in half
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Irregular Pentagonal Cell
:  directional parameter 

for line 0,1  etc

:  point flux for point  

on line 0,1  etc
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on line 0,1  etc

: density derivative for 

point 0 etc

: weight to be defined 

for the point flux
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δ f
: directional derivative

The definition of weights and point fluxes will be obtained 
by the geometric and collocation formula . This is non 
trivial even in 1-d for irregular resolution. 
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Irregular Pentagonal Cell
Geometric Formula, 
derived from Stokes Eq:
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The inhomogeneous term iht is 
different from 0, when the grid 
is not quasi  regular
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is not quasi  regular



Irregular Pentagonal Cell
The scheme defined above is 

conserving, if the point fluxes 

defined above for points 0 and 

1 etc compensate. This is 

1
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1 etc compensate. This is 

achieved by defining the 

derivatives by collocation points 

obtained by interpolation or 

Galerkin methods.  
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1. In an irregular grid even order 
2 in 1-d is non trivial

4s 4

s 3
2 in 1-d is non trivial

2. It is a generalisation of 
Arakawa method, but all 
interpolations and 
differentiations must be done 
in third (second) Order.



Dual Cells with Pentagons
2-d Example: RESOLUTION CHANGE USING 



1-d Example
3-rd order scheme with conservation



Conclusions
•In an irregular cell structure point fluxes can be 

defined as linear functions of surrounding mass or 

flux points, leading to conserving second or third 

order schemes.order schemes.

•Each point flux uses only a small part of the (large) 

Baumgardner stencil.

•Point fluxes cannot be accurate approximations of 

fluxes, such as high order interpolations of grid values fluxes, such as high order interpolations of grid values 

of fluxes.

•The schemes are free of grid generated noise (Bulls 

eyes on irregular grids.



Conclusions (Cnt)
•The definition of point fluxes is not unique, therefore 

other restraints, such as desired behaviour of div 0 

waves, can be investigated

•The schemes can be implemented easily, when •The schemes can be implemented easily, when 

coordinate of points and the neighbourhood table for 

mass and flux points as well as the neighbourhood 

information (Stencil) is available.

•Cut cells can be brought from first to higher order •Cut cells can be brought from first to higher order 

(for the cells near boundaries).

•Problems encountered with irregular and adaptive 

resolution can often be traced back to discretisation 

crimes, even hanging nodes.


