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Spherical Centroidal Voronoi

Tessellations

Cell center is cell center-of-mass

Edges of dual grid intersect edges of primary
grid at right angles.

SRNWP, 26 October 2009



Unstructured-Grid Preliminaries

(1) Use flux (conservative) form.
(2) Require exact scalar mass conservation in the discretization.
(3) Require consistency with the mass conservation equation.
(4) Require positive-definite and monotonic options.
(5) Require a discretization for arbitrary SCVT grids - cells

with n sides (n = 5, 6, 7, … sides).



Continuous         Discrete Equations

Forward-in-time
Finite volume discretization

Integrate space and time 

Use divergence theorem 

Apply to cell 



Discretizations

Conservative if the same flux is used to update both
cells sharing an edge (e.g                  is used to
update           and           ).

Consistent if

How can we compute                 ?

Formulation allows for a variety of PD and monotonic limiters.



Discretizations
Possibilities for (        is directed out of cell 1)

(1) 1st order upwind:

Monotonic
Unacceptably dissipative

(2) 2nd order ~ centered:

Less than 2nd order on irregular grids.
Unstable for FIT integration (can use LF, RK, AB, other schemes)
Can be monotonized within some time-integration schemes. 



Discretizations
(3) Incremental remapping (Lipscomb and Ringler, 2005; Yeh, 2007)

Remapping (departure cell to arrival cell)

Incremental remapping (departure cell to arrival cell)



Discretizations
(3) Incremental remapping (Lipscomb and Ringler, 2005; Yeh, 2007)

1st order polynomial specifies 
scalar distribution.

φx and φy are computed as an
average of those computed by
fitting planes to values at the
vertices of the triangles of the
dual grid.

Quadrature requires evaluation of the polynomial at
the centroid of the triangles comprising the scalar
mass flux.

Determination of the quadrature points is complex, costly, and
often requires performing quadrature over many different cells
for a single flux.



Discretizations
(4) Upwind-biased advection (Miura 2007)

Similar to LR (2005) and Yeh (2007) but uses the assumption
that the velocity is constant along a cell edge, and uses only the

upwind neighbor in the quadrature.

Departure region is a parallelogram, single-point
quadrature is sufficient for linear polynomial.  Polynomial
is determined by least-squares fit to points.

Much simpler and less costly than LR (2005) and Yeh (2007), and similar in accuracy.



Discretizations
(5) Our extension of Miura (2007)

We use the same stencil as Miura (2007), LR (2005),
Yeh (2007) for polynomial fit, but we use a quadratic
polynomial (least-squares fit to cell-average values).

Parallelogram requires 4 evaluations of polynomial in
the quadrature.

Constant term is adjusted such that the integral over
the cell is equal to the cell area times the cell-
averaged value.



Results
Williamson et al (JCP 1992) - Test case 1

Solid body rotation, 12 day integration to
circle the sphere.

Initial and end state are identical.

• First order reconstruction reproduces Miura.
• Use of a monotonic limiter reduces the error.
• For constant Cr=0.6, reduction of error with 2nd

order reconstruction is small compared with 1st
order reconstruction.



N
2562

10242
40962

163842

Δx
480
240
120
60

Δt
(Cr=0.6)
7200 s
3600 s
1800 s
900 s

Cr
(Δt=50 s)

4x10-3

8x10-3

1.6x10-2

3.2x10-2

Results
For smaller Courant numbers, accuracy of 1st-order reconstruction degrades dramatically.
The 2nd-order reconstruction is much less affected by the Courant number (timestep)

1st order
2nd order



Results
1st-order reconstruction 2nd-order reconstructionInitial state

Solutions at Day 12
(Cr = 0.6)

Error
(Exact - computed)



Results
Slotted-cylinder advection - test of monotonic limiter
(Zalesak 1979).

Limiter performs as expected.
Discontinuity spread over  ~ 5 cells.

Initial state

Day 12, 2562 Cells Day 12, 10242 Cells Day 12, 40962 Cells



Results
Initial state Day 12, 10242 Cells

2nd-order reconstruction
Day 12, 10242 Cells

1st-order reconstruction

Differences between 2nd and 1st order reconstruction results are
small for discontinuous features.



Results - Reconstruction

φx  φxx φxy

2nd order reconstruction

10242 Cells, initial state 10242 Cells, initial state10242 Cells, initial state



φx φxφx

Results - Reconstruction

Least-squares fitUsing Green’s theoremFitting planes to the
triangles on the dual
grid, averaging slopes.

Computation of higher
derivatives?

Robust.  Direct
computation of full
polynomial.



Results - Deformational flow
Perfect hexagons on a plane (Blossey and Durran 2008)

t = 0,T t = T/4

t = T/2 t = 3T/4



Results - Deformational flow
Perfect hexagons on a plane (Blossey and Durran 2008)

For reference:



Summary

Extension to Miura (2007) transport scheme:
2nd order polynomial for cell mass reconstruction.

(1) Uses same stencil as 1st order reconstruction.
(2) More accurate than 1st-order reconstruction in all cases, has

a smoother distribution or the error (e.g L2 norms).
(3) Accuracy of 2nd-order scheme much less dependent on

timestep than 1st-order scheme.
(4) Convergence rate approaches third order for smooth flows,

regardless of Cr number.
(5) Successfully tested for deformational flows, discontinuous

distributions (using Zalesak 1979 limiter).

Future work: role of geometric error (constant V assumption along
cell edge) in limiting accuracy.


