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SCVTs
Spherical Centroidal Voronoi
Tessellations

Cell center is cell center-of-mass

Edges of dual grid intersect edges of primary
grid at right angles.



Unstructured-Grid Preliminaries
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(1) Use flux (conservative) form.

(2) Require exact scalar mass conservation in the discretization.

(3) Require consistency with the mass conservation equation.

(4) Require positive-definite and monotonic options.

(5) Require a discretization for arbitrary SCVT grids - cells
with n sides (n =35, 6, 7, ... sides).



Continuous = Discrete Equations
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Forward-in-time
Finite volume discretization
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Integrate space and time

Use divergence theorem

Apply to cell



Discretizations

S

Conservative if the same flux is used to update both
cells sharing an edge (e.g (d1pui¢), 1s used to
update (pg), and (p9), ).

[(66)*72¢ = (59)'], = = - 3 des (puL9A)

Consistent if  [(p)""2* — @], =——+ Z de, (pu At)

Formulation allows for a variety of PD and monotonic limiters.

How can we compute (dipui); ?



Discretizations

Possibilities for (dipui¢);  ((ur),1s directed out of cell 1)

(1) 1st order upwind: (dipui¢), = (duy),, - (pd),

Monotonic
Unacceptably dissipative

(2) 2nd order ~ centered:

(@1pusd), = (@us),, - 5| (09), + (59),

Less than 2nd order on irregular grids.
Unstable for FIT integration (can use LF, RK, AB, other schemes)
Can be monotonized within some time-integration schemes.



Discretizations

(3) Incremental remapping (Lipscomb and Ringler, 2005; Yeh, 2007)
update of () is () where — = VAt

Remapping (departure cell to arrival cell) > i%j}%}

Incremental remapping (departure cell to arrival cell)

e

new cell mass = original cell mass - mass + mass

incremental masses 4% D ‘ \\can also be mterpreted as fluxes



Discretizations

(3) Incremental remapping (Lipscomb and Ringler, 2005; Yeh, 2007)

1st order polynomial specifies ¢(x’ y) = g1+ 1T + Yy
scalar distribution. — ¢1 + qu T + ¢yy

¢, and ¢, are computed as an 0.”

average of those computed by ‘

fitting planes to values at the C"

vertices of the triangles of the “

dual grid. .

Quadrature requires evaluation of the polynomial at ‘
the centroid of the triangles comprising the scalar

mass flux. 4

Determination of the quadrature points is complex, costly, and
often requires performing quadrature over many different cells
for a single flux.



Discretizations

(4) Upwind-biased advection (Miura 2007)

Similar to LR (2005) and Yeh (2007) but uses the assumption
that the velocity is constant along a cell edge, and uses only the
upwind neighbor in the quadrature.

Departure region is a parallelogram, single-point \
quadrature is sufficient for linear polynomial. Polynomial
is determined by least-squares fit to points.

Much simpler and less costly than LR (2005) and Yeh (2007), and similar in accuracy.



Discretizations

(5) Our extension of Miura (2007)
¢(z,y) = 1+ c1z + cay

+ 03932 + caxy + C5y2
— ¢1 + ¢z + ¢yy

1
+ 5 (¢$Ix2 + 2¢wyxy + ¢yyy2)

We use the same stencil as Miura (2007), LR (2005),
Yeh (2007) for polynomial fit, but we use a guadratic
polynomial (least-squares fit to cell-average values).

Parallelogram requires 4 evaluations of polynomial in
the quadrature.

Constant term is adjusted such that the integral over
the cell is equal to the cell area times the cell-
averaged value.




Results

Test Case 1 - Cosine Bell

Williamson et al (JCP 1992) - Test case 1 o Day 12, Cr~06
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 First order reconstruction reproduces Miura.

» Use of a monotonic limiter reduces the error.

* For constant Cr=0.6, reduction of error with 2nd
order reconstruction is small compared with st
order reconstruction.
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Results

For smaller Courant numbers, accuracy of 1st-order reconstruction degrades dramatically.
The 2nd-order reconstruction is much less affected by the Courant number (timestep)

At Cr
Test Case 1 - Cosine Bell N Ax  (Cr=0.6) (At=505)
Day 12 2562 480 7200 s 4x10-3

10242 240 3600 s 8x10-3
40962 120 1800 s 1.6x10-2
163842 60 900 s 3.2x1072
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Results

Initial state Ist-order reconstruction 2nd-order reconstruction

700 800 900

Solutions at Day 12
(Cr=0.6)

Error
(Exact - computed)
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Results

Slotted-cylinder advection - test of monotonic limiter
(Zalesak 1979).

Initial state

Limiter performs as expected.
Discontinuity spread over ~ 5 cells.
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Results

Initial state Day 12, 10242 Cell§ Day 12, 10242 Cell-s
2nd-order reconstruction I st-order reconstruction
W
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Differences between 2nd and 1st order reconstruction results are
small for discontinuous features.



Results - Reconstruction
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Results - Reconstruction
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Fitting planes to the
triangles on the dual
grid, averaging slopes.
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Using Green’s theorem

ngqbdw:!/ (-2-‘5) dz dy
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Computation of higher
derivatives?
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Least-squares fit

Robust. Direct
computation of full
polynomial.



Results - Deformational flow

Perfect hexagons on a plane (Blossey and Durran 2008)
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Error

Results - Deformational flow

Perfect hexagons on a plane (Blossey and Durran 2008)

For reference:
Blossey and Durran (2007)
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Summary

Extension to Miura (2007) transport scheme:

2nd order polynomial for cell mass reconstruction.

(1)
(2)

3)
(4)
)

Uses same stencil as 1st order reconstruction.

More accurate than 1st-order reconstruction in all cases, has
a smoother distribution or the error (e.g L, norms).

Accuracy of 2nd-order scheme much less dependent on
timestep than 1st-order scheme.

Convergence rate approaches third order for smooth flows,
regardless of Cr number.

Successfully tested for deformational flows, discontinuous
distributions (using Zalesak 1979 limiter).

Future work: role of geometric error (constant V assumption along

cell edge) in limiting accuracy.

error

Test Case 1 - Cosine Bell
Day 12

number of grid cells



