Godunov-type transport scheme in ICON

Implementation and results of idealised test cases

Daniel Reinert Deutscher Wetterdienst

SRNWP-Workshop, 26.10.2009 Bad Orb

Outline

- I. The ICON-grid
- II. Transport on unstructured grids
 - Introduction into combined semi-Lagrangian finite-Volume thinking
- III. Currently implemented transport scheme
 - Reconstruction
 - Flux integration
- IV. Results of idealised test cases on the sphere
 - Solid body rotation
 - Deformational flow (static vortex)
- V. Summary and outlook

I. The ICON-grid

Grid topology and geometry

- Inscribe icosahedron inside the unit sphere
- The 12 vertices touching the surface define the basic mesh consisting of 20 spherical triangles.
- Further mesh refinement by one "root division" followed by successive bisections (connect midpoints of the edges for each triangle by great circle arcs)

- Primal (Delaunay) grid: triangles
- Dual (Voronoi) grid: hexagons
 - (+ 12 pentagons at the icosahedron vertices)

3D arrangement of the discrete variables

- Cell center: center of triangle circumcircle
 - ⇒ Arc connecting two mass points is orthogonal to and bisects triangle edge

II. Introduction into combined semi-Lagrangian finite-volume thinking

Find solution to

$$\frac{\partial \Psi}{\partial t} + \nabla \cdot (\vec{v} \Psi) = 0 \qquad \qquad \begin{aligned} \Psi &= \rho \, q &, \text{if non-hydrostatic} \\ \Psi &= \Delta p \, q &, \text{if hydrostatic} \end{aligned}$$

on the sphere, using finite-Volume technique.

Define control volume

Discrete value at mass point is defined to be the average of the subgrid dist. over the control volume

$$\overline{\Psi}_i^n = \frac{1}{A_i} \iint_{A_i} \Psi(x, y, t_0) \, \mathrm{d}A$$

- A_i : control volume area
- Siven $\overline{\Psi}_i$ at time t_0 we seek for a new set of $\overline{\Psi}_i$ at time $t_1 = t_0 + \Delta t$ as an approximate solution after a short time of transport.

Problem formulation

Formally, the solution can be derived by integrating the continuity equation over the time interval [t₀,t₁] and the control volume A_i

$$\int_{t_0}^{t_1} \iint_{A_i} \frac{\partial \Psi}{\partial t} \, \mathrm{d}A \, \mathrm{d}t = -\int_{t_0}^{t_1} \iint_{A_i} \vec{\nabla} \cdot (\vec{v} \, \Psi) \, \mathrm{d}A \, \mathrm{d}t$$

using Gauss-
$$\overline{\Psi}_i^{n+1} - \overline{\Psi}_i^n = -\frac{1}{A_i} \int_{t_0}^{t_1} \oint_{\partial A_i} (\Psi \vec{v} \cdot \vec{n}_i) \, \mathrm{d}l \, \mathrm{d}t$$

Assume triangular control volume and $\vec{v} = \text{const}$ for $t \in [t_0, t_1]$

$$\overline{\Psi}_{i}^{n+1} = \overline{\Psi}_{i}^{n} - \frac{1}{A_{i}} \sum_{k=1}^{3} \vec{F}_{ik} \cdot \vec{n}_{ik} \quad \text{, with} \quad \vec{F}_{ik} = \left(\iint_{A_{ik}} \Psi \, \mathrm{d}A \right) \cdot \vec{\hat{n}}_{ik}$$

> No approximation as long as we know the subgrid distribution Ψ and A_{ik} analytically; except for assumption of $\vec{v} = \text{const}$ for $t \varepsilon [t_0, t_1]$

$$\overline{\Psi}_{i}^{n+1} = \overline{\Psi}_{i}^{n} - \frac{1}{A_{i}} \sum_{k=1}^{3} \vec{F}_{ik} \cdot \vec{n}_{ik} \quad \text{, with} \quad \vec{F}_{ik} = \left(\iint_{A_{ik}} \Psi \, \mathrm{d}A \right) \cdot \vec{\hat{n}}_{ik}$$

 $\vec{n}_{ik}, \ \vec{\hat{n}}_{ik}$: Unit normal pointing outward of A_i and A_{ik}, respectively

What does it mean graphically ?

$$\overline{\Psi}_{i}^{n+1} = \overline{\Psi}_{i}^{n} - \frac{1}{A_{i}} \sum_{k=1}^{3} \vec{F}_{ik} \cdot \vec{n}_{ik} \quad \text{, with} \quad \vec{F}_{ik} = \left(\iint_{A_{ik}} \Psi \, \mathrm{d}A \right) \cdot \vec{\hat{n}}_{ik}$$

 $\vec{n}_{ik}, \ \hat{\vec{n}}_{ik}$: Unit normal pointing outward of A_i and A_{ik}, respectively

$$\overline{\Psi}_{i}^{n+1} = \overline{\Psi}_{i}^{n} - \frac{1}{A_{i}} \sum_{k=1}^{3} \vec{F}_{ik} \cdot \vec{n}_{ik} \quad \text{, with} \quad \vec{F}_{ik} = \left(\iint_{A_{ik}} \Psi \, \mathrm{d}A \right) \cdot \vec{\hat{n}}_{ik}$$

 $\vec{n}_{ik}, \ \vec{\hat{n}}_{ik}$: Unit normal pointing outward of A_i and A_{ik}, respectively

What does it mean graphically ?

$$\overline{\Psi}_{i}^{n+1} = \overline{\Psi}_{i}^{n} - \frac{1}{A_{i}} \sum_{k=1}^{3} \vec{F}_{ik} \cdot \vec{n}_{ik} \quad \text{, with} \quad \vec{F}_{ik} = \left(\iint_{A_{ik}} \Psi \, \mathrm{d}A \right) \cdot \vec{\hat{n}}_{ik}$$

 $\vec{n}_{ik}, \ \vec{\hat{n}}_{ik}$: Unit normal pointing outward of A_i and A_{ik}, respectively

Algorithm

The numerical algorithm consists of three major steps

- 1. Determine the upstream area A_{ik} for the kth edge
- 2. Determine the subgrid distribution $\Psi(x, y, t_0)$ for control volume i with cell average $\overline{\Psi}_i^n$
- 3. Integrate the subgrid distribution $\Psi(x, y, t_0)$ over the area A_{ik} . $\iint \Psi(x, y, t_0) \, dA$

plug in

$$\overline{\Psi}_{i}^{n+1} = \overline{\Psi}_{i}^{n} - \frac{1}{A_{i}} \sum_{k=1}^{3} \vec{F}_{ik} \cdot \vec{n}_{ik} , \text{ with } \vec{F}_{ik} = \left(\iint_{A_{ik}} \Psi \, \mathrm{d}A \right) \cdot \vec{\hat{n}}_{ik}$$

III. Currently implemented transport scheme

DWD

1. Approximation of the upstream area A_{ik}

2. Approximation of subgrid distribution $\Psi(x,y,t_0)$

> Piecewise linear approximation for subgrid distribution $\Psi(x, y, t_0)$

$$\Psi^{R}(\vec{x} - \vec{x_{i}}) = \Psi|_{\vec{x_{i}}} + \left(\frac{\partial \Psi}{\partial x}\right|_{\vec{x_{i}}} (x - x_{i}) + \left(\frac{\partial \Psi}{\partial y}\right|_{\vec{x_{i}}} (y - y_{i}) \qquad (x_{i}, y_{i}) : \text{mass point of control volume i}$$

In the control volume i and to minimize the error in predicting the mean values $\overline{\Psi}_{i1}$, $\overline{\Psi}_{i2}$, $\overline{\Psi}_{i3}$ for control volumes in the stencil.

3. Integrate subgrid distribution

- 1. Upstream area A_{i1}
- 2. Subgrid distribution $\Psi(x,y,t_0)$
- 3. Integration

$$\vec{F}_{i1} \cdot \vec{\hat{n}}_{i1} = \iint_{A_{i1}} \Psi(x, y, t_0) \, \mathrm{d}A = A_{i1} \overline{\Psi}_{A_{i1}}$$

upstream area: $A_{i1} = l_1 \left(v_n^{n+1} \Delta t \right)$

$$A_{i}^{n+1}$$

$$A_{i}^{n+1}$$

$$\vec{x}_{i1}$$

 \wedge

area average:
$$\overline{\Psi}_{A_{i1}} = \Psi^R(\vec{x}_C)$$

 $\vec{x}_C = \vec{x}_{i1}^{n+1} - \frac{\Delta t}{2}\vec{v}^{n+1}$ center of mass of parallelogramm

IV. Results of idealised test cases on the sphere

Solid body rotation test case

- Uniform flow along northeast direction
- Initial scalar field is a cosine bell centered at the equator
- After 12 days of model integration, cosine bell reaches its initial position
- Analytic solution at every time step = initial condition

Error norms (I_1, I_2, I_∞) are calculated after one complete revolution for different resolutions

Error norms (solid body rotation)

c≈0.25, with limiter

- > I_1 and I_2 : almost 2nd order convergence rate
- \blacktriangleright I_{∞}: only close to 1st order

Static vortex test case

- Flow is deformational, thus more challenging than solid-body rotation
- > Vortex center at $(\lambda, \phi) = (180^\circ, 37.5^\circ)$
- U, V constant in time
- Comparison against analytical solution

Results after 10 days

- ➢ Resolution: R3B4 (≈ 92 km)
- > Courant number c ≈ 0.1

Error norms (static vortex)

- no limiter: almost 2nd order convergence for medium-high resolution, but convergence rate decreases for very high resolution.
- with limiter: slightly increasing absolute error and slightly decreasing convergence rates

Error norms (static vortex)

V. Summary and outlook

- transport schemes in ICON are still work in progress
- current horizontal advection scheme is similar to the scheme of Miura (2007).
- based on combined semi-Lagrangian finite-Volume thinking (subgrid streamline integration method)
- formally second order accurate

Outlook:

- More testing required
- pushing towards third order accuracy
 - Use quadratic instead of linear reconstruction
 - Improve approximation of the upwind area (use reconstructed velocities at vertices)
 - Involves explicit numerical integration of

$$\iint\limits_{A_{ik}} \Psi(x,y,t_0) \,\mathrm{d}A$$

Thank you for your attention !!

Slope limiting

Scheme is non-monotonous

> Initial conditions: 0 <= Ψ <= 1

Standard Barth-Jespersen limiter

Not able to fully eliminate over- and undershoots

Modified Limiter

