Predicting the Solid-to-Liquid Ratio of Precipitation using a Bulk Microphysics Scheme

Jason Milbrandt

Ron McTaggart-Cowan Denis Jacob

Environment Canada

Numerical Weather Prediction Research Section

Environment Environnement Canada Canada 8th International SRNWP Workshop 26-28 Oct. 2009

Standard forecast parameter:

(directly from model QPF)

Desired forecast parameter:

48 hour fcst valid 06:00Z December 04 2007

48 hour fcst valid 06:00Z December 04 2007

Accumulated Precipitation

(Liquid-Equivalent)

Accumulated Precipitation (Unmelted - i.e. *Snow Depth*)

OUTLINE

- 1. Background
- 2. Proposed method
- 3. Preliminary results
- 4. Conclusion

DEFINITIONS

SNOW DENSITY – bulk density of <u>freshly falling</u> snow at the surface

SOLID-TO-LIQUID ratio – ratio of the <u>depth</u> of the unmelted precipitation to its liquid-equivalent value

e.g. for precipitating snow with $\rho_s = 100 \text{ kg m}^{-3}$ ($\rho_L = 1000 \text{ kg m}^{-3}$), Solid:Liquid = $(1/\rho_s) / (1/\rho_L)$ = 1000 kg m⁻³ / 100 kg m⁻³ = 10:1

FACTORS AFFECTING SNOW DENSITY

- 1. In-cloud processes (affect crystal habit and size)
 - supersaturation
 - liquid water content
- 2. Sub-cloud processes
 - sublimation
 - melting
- 3. Compaction upon impact

Observed SOLID-LIQUID ratios:

- can range from 3:1 to 100:1
- average value approximately 10:1
- varies geographically

Source: Ware et al. (2006), Weather and Forecasting

Environment Environnement Canada Canada

8th International SRNWP Workshop, 26-28 Oct. 2009

APPROACHES TO PREDICTION:

- 10:1 rule
- Climatology
- Neural network diagnostic (statistics of environmental conditions) e.g. Roebber et al. (2003)
- Decision tree algorithm (based on physical principles and environment)
 e.g. Dubé (2006)
- Predicted from the microphysics scheme

Cloud Microphysics Scheme:*

2-moment, 6-categories

Size distribution of each category *x*: $N_x(D) = N_{0x} D^{\alpha_x} e^{-\lambda_x D}$

Prognostic quantities:

- mass mixing ratio (*q_x*)
- total number concentration (N_x)

*Milbrandt and Yau, 2005a,b (*J. Atmos. Sci.*)

Cloud Microphysics Scheme:

Representation of "snow": (i.e. solid, white precipitation at ground)

Size distribution of each category x:

$$N_x(D) = N_{0x} D^{\alpha_x} e^{-\lambda_x D}$$

Prognostic quantities:

- mass mixing ratio (*q_x*)
- total number concentration (N_x)

"Snow" is represented by 3 categories:

ICE (pristine crystals),

GRAUPEL (rimed crystals),

SNOW (large crystals / aggregates)

Background	Proposed Method	Results		
"Snow" is represented by 3 categories:				
ICE (pristine crysta	als),	$ ho_{\rm i}$ = 500 kg m ⁻³		
GRAUPEL (rimed	crystals)	$ ho_{ m g}$ = 400 kg m ⁻³		
SNOW (large cryst	als / aggregates)	$\rho_{\rm s} = f(D_{\rm s})$		

Background	Proposed Method	Results	
			-
" <u>Snow" is repre</u>	sented by 3 categor	ies:	
ICE (pristine cry	vstals),	$ ho_{\rm i}$ = 500 kg m ⁻³	
GRAUPEL (rim	ed crystals)	* $ ho_{\rm g}$ = 400 kg m ⁻³	
SNOW (large cr	ystals / aggregates)	$\rho_{\rm s} = f(D_{\rm s})$	

* For GRAUPEL

Recently changed to
$$\rho_{g} = f(R_{i})$$
, where $R_{i} = \frac{r_{drop} \cdot V_{impact}}{T_{sfc}}$

following Heymsfield and Pflaum (1985);
 Cober and List (1993)

Proposed Method

"Snow" is represented by 3 categories:

ICE (pristine crystals),

GRAUPEL (rimed crystals)

SNOW (large crystals / aggregates)

 $ho_{\rm i} = 500 \text{ kg m}^{-3}$ $ho_{\rm g} = 400 \text{ kg m}^{-3}$

$$*\rho_{\rm s} = f(D_{\rm s})$$

*<u>For **SNOW**</u>:

Environnement

Canada

Use of $m_s(D) = cD_s^d$ $\Rightarrow \rho_s(D) = eD_s^f$

(for the bulk density of an equivalent-mass sphere)

Brandes et al. (2007) J. Appl. Meteor. and Clim.

Background	Proposed Method	Results		
"Snow" is represented by 3 categories:				
ICE (pristine crys	stals),	$ ho_{\rm i}$ = 500 kg m ⁻³		
GRAUPEL (rime	d crystals)	$ ho_{ m g}$ = 400 kg m ⁻³		
SNOW (large cry	rstals / aggregates)	$\rho_{\rm s} = f(D_{\rm s})$		

Thus, the density of the precipitating <u>total "snow"</u> is the mass-weighted mean of the 3 component densities:

$$\rho_{snow} = \frac{(q_i \rho_i) + (q_g \rho_g) + (q_s \overline{\rho}_s^*)}{q_i + q_g + q_s} \qquad \text{(in air)}$$

$$\overset{*}{\overline{\rho}} = \frac{\int_{0}^{\infty} \rho(D) N(D) dD}{\int_{0}^{\infty} N(D) dD}$$

8th International SRNWP Workshop, 26-28 Oct. 2009

8th International SRNWP Workshop, 26-28 Oct. 2009

Formal Approach:

For each category x (x = i, g, s):

Compute solid (unmelted) volume fluxes, $F_{v,x}$

$$\frac{F_{v_{-x}}}{F_{m_{-x}}} = \frac{\int_{0}^{\infty} V(D) \cdot vol(D) \cdot N(D) dD}{\int_{0}^{\infty} V(D) m(D) N(D) dD} = \frac{\int_{0}^{\infty} V(D) \cdot \frac{m(D)}{\rho(D)} \cdot N(D) dD}{\int_{0}^{\infty} V(D) m(D) N(D) dD} = \frac{\frac{1}{\rho_{x}} \int_{0}^{\infty} V(D) m(D) N(D) dD}{\int_{0}^{\infty} V(D) m(D) N(D) dD} = \frac{1}{\rho_{x}}$$

$$F_{v_{-x}} = \frac{F_{m_{-x}}}{\rho_{x}} \quad \text{BUT - only true for constant } \rho_{x}$$
(OK for *ICE* and *GRAUPEL*)
For *SNOW*, $\rho = \rho(D)$ - must compute F_{v} directly (from integral)

$$\longrightarrow F_{v_s} = \int_0^\infty V(D) \cdot vol(D) \cdot N(D) dD$$

Instantaneous precipitation rates are given by:

$$F_{v_{liq}} = \frac{F_{m_{li}}}{\rho_{L}} + \frac{F_{m_{g}}}{\rho_{L}} + \frac{F_{m_{s}}}{\rho_{L}}$$

 \rightarrow total solid (liquid-equivalent) precipitation rate

$$F_{v} = \frac{F_{m_{i}}}{\rho_{i}} + \frac{F_{m_{g}}}{\rho_{g}} + \int_{0}^{\infty} V_{s}(D) \cdot vol_{s}(D) \cdot N_{s}(D) dD$$

 \rightarrow total solid (unmelted) precipitation rate

$$\Rightarrow \quad SOLID - to - LIQUID_{inst} = \frac{F_v}{F_{v_liq}}$$

BUT:

Solid-to-Liquid Ratio (instantaneous)

Vertical Profile at point X

Source of Problem (for too small ρ_s / too large snow rates)

- melting snow (q_s) can be have large D_s and thus the diagnostic $\rho_s(D_s)$ is unrealistically small
- increased $\rho_{\rm s}$ due to partial melting (increasing liquid fraction of melting snowflake) is not accounted for

– Need to adjust the bulk density of melting snow –

(tending towards density of water with increasing degree of melting)

Proposed Solution: 1

- Imposing a MINIMUM λ_s (e.g. 700 m⁻¹) Heymsfield et al., 2008
- Very large D_s is controlled (e.g. max. $D_s = 1.43$ mm)

BUT:

Scheme still sees relatively large, dry, low-density snow

Proposed Solution: 2

- Approximate liquid fraction of melting snow by $q_r / (q_r + q_s)$
- Use mass-weighted density to approximate density of melting snow
- Physically justifiable
 - unless warm-rain coalescence is active, q_r in melting layer comes from melting q_s (and q_g)

Estimation of liquid fraction:

Conceptual view of melting snow:

8th International SRNWP Workshop, 26-28 Oct. 2009

Adjustments:

$$F_{v}' = \frac{F_{m_{i}}}{\rho_{i}} + \frac{F_{m_{g}}}{\rho_{g}} + F_{v_{s}}^{*}$$

$${}^{*}F_{v_{s}} = \int_{0}^{\infty} V(D) \cdot vol(D) \cdot N(D) dD$$

Actual application:

if
$$T < 0^{\circ}$$
C:

$$F_{v} = (1 - f_{liq}) \cdot F_{v} + f_{liq} \cdot F_{v_{liq}}$$

Thus, as the liquid fraction approaches 1, the total volume flux tends towards the total liquid-equivalent volume flux

Before Correction

After Correction

0.500 0.550 0.600 Ds **D**_s 0.650 0.700 $\overline{\rho}_{s}$ ≫0.750 $\overline{\rho}_{s}$ 35 kg m⁻³ (29:1) 0.800 \boldsymbol{q}_{s} 250 kg m⁻³ (4:1) 0.850 0.900 q_r 0.950 1.000 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

g kg⁻¹ (q_x), mm (D_s), g m⁻³ (ρ)

Model Level

Solid-to-liquid ratio (instantaneous)

Before Correction

Solid-to-liquid ratio (instantaneous)

*

Finally, Instantaneous precipitation rates are given by:

$$F_{v_{-}liq} = \frac{F_{m_{-}i}}{\rho_{L}} + \frac{F_{m_{-}g}}{\rho_{L}} + \frac{F_{m_{-}s}}{\rho_{L}}$$

 \rightarrow total solid (liquid-equivalent) precipitation rate

$$F_{v} = \frac{F_{m_{i}}}{\rho_{i}} + \frac{F_{m_{g}}}{\rho_{g}} + \int_{0}^{\infty} V_{s}(D) \cdot vol_{s}(D) \cdot N_{s}(D) dD$$

$$\Rightarrow \quad SOLID - to - LIQUID_{inst} = \frac{F_v}{F_{v_liq}}$$

Finally, Instantaneous precipitation rates are given by:

$$F_{v_{-}liq} = \frac{F_{m_{-}i}}{\rho_{L}} + \frac{F_{m_{-}g}}{\rho_{L}} + \frac{F_{m_{-}s}}{\rho_{L}}$$

 \rightarrow total solid (liquid-equivalent) precipitation rate

$$F_{v}' = \frac{F_{m_{i}}}{\rho_{i}} + \frac{F_{m_{g}}}{\rho_{g}} + \int_{0}^{\infty} V_{s}(D) \cdot vol_{s}(D) \cdot N_{s}(D) dD$$

$$F_{v} = (1 - f_{liq}) \cdot F_{v}' + f_{liq} \cdot F_{v_{-}liq}$$
 (if $T < 0^{\circ}$ C)

$$\Rightarrow \quad SOLID - to - LIQUID_{inst} = \frac{F_v}{F_{v_liq}}$$

Proposed Method

Results

48 hour fcst valid 06:00Z December 04 2007

48 hour fcst valid 06:00Z December 04 2007

Accumulated Precipitation

(liquid-equivalent)

Accumulated Precipitation

(unmelted)

i.e. snow depth

mm

1200

1100 1000

900 800

700 600

500 400

Proposed Method

Results

48 hour fcst valid 06:00Z December 04 2007

48 hour fcst valid 06:00Z December 04 2007

Accumulated Precipitation

(liquid-equivalent)

Accumulated Precipitation

(unmelted)

i.e. snow depth

Proposed Method

Results

48 hour fcst valid 06:00Z December 04 2007

48 hour fcst valid 06:00Z December 04 2007

Accumulated Precipitation

(liquid-equivalent)

Solid-to-Liquid Ratio

26 24 22

20 18

10:1

Distribution on grid

48 hour fcst valid 06:00Z December 04 2007

Solid-to-Liquid Ratio

Proposed Method

Results

Source: Roebber et al. (2003), Weather and Forecasting

8th International SRNWP Workshop, 26-28 Oct. 2009

Case: 12 March 2009 (00 z)

8th International SRNWP Workshop, 26-28 Oct. 2009

CONCLUSION

- The cloud microphysics scheme predicts the individual quantities and size distributions of <u>pristine crystals</u>, <u>aggregates</u>, <u>graupel</u>
- This information can be exploited to compute the instantaneous solid (unmelted) precipitation rate → it need not be simply inferred
- Preliminary tests indicate that this method produces a realistic probability distribution of the solid-to-liquid ratio

THANK YOU