

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Parametrization of Subgrid-Scale Orographic Drag in the COSMO Model: An Alpine Perspective

Oliver Fuhrer, Andries de Vries, Pirmin Kaufmann MeteoSwiss

8th SRNWP-Workshop, 27. October 2009

Overview

- Introduction
- SSO Scheme (Lott and Miller, 1997)
- Improvements
- Case Study
- Verification
- Conclusions & Outlook

Deutscher Wetterdienst

The sub-grid scale orography scheme by Lott and Miller (1997) was implemented in the COSMO model. It shows the following improvements in COSMO-EU in the period 26 Feb. – 17 Mar. 2008:

- The positive bias of the surface wind speed is removed.
- The positive bias of the surface wind direction and the RMSE of the vector wind are reduced.
- The negative bias of the mean sea level pressure is reduced.
- The RMSE of the mean sea level pressure is significantly reduced, the variance of the pressure is substantially reduced by more than 13%. This means that the pressure patterns are much better captured by the model. A similar improvement of this quantity has not been achieved by any other model modification during the last years.
- Upper air verification shows a similar improvement.

Thanks to Ulrich Damrath and Ulrich Pflüger, DWD, for their verifications.

Jan-Peter Schulz

17 Sep. 2008

緣

COSMO-7

COSMO-2

Subgrid-Scale Orography

Image: Christophe Hug

O Motivation

- Hope for similar improvements in COSMO-7
- Performance over the Alps unclear
- Usefulness in COSMO-2 unclear

Lott and Miller (1997) scheme

- Elliptic mountain
- Split flow

- Gravity wave drag $\tau_w = \rho_0 \, bGB(\gamma) NUH^2$ Ri_c (e.g. Philipps 1984)
- Blocked-flow drag (e.g. Kirchhoff 1867) $\tau_{\rm b} \approx C_{\rm d} \pi b \rho_0 Z_{\rm b} \frac{U|U|}{2}$

Lott and Miller (1997) scheme

- Elliptic mountain
- Split flow

- Gravity wave drag $\tau_w = \rho_0 b GB(\gamma) N U H^2$ Ri_c (e.g. Philipps 1984)
- Blocked-flow drag (e.g. Kirchhoff 1867) $au_{\rm b} \approx C_d \pi b \rho_0 Z_{\rm b} \frac{U|U|}{2}$

Input field Tuning parameter

 Not all scales are relevant for processes parametrized by the SSO scheme

Non-dimensional mountain width

 Not all scales are relevant for processes parametrized by the SSO scheme

Non-dimensional mountain width

 Not all scales are relevant for processes parametrized by the SSO scheme

Non-dimensional mountain width

C Scale-separation

• Need to separate turbulent and mesoscale unresolved drag

C Scale-separation

• Need to separate turbulent and mesoscale unresolved drag

C Scale-separation

• Need to separate turbulent and mesoscale unresolved drag

Roughness length z0

- Substantial decrease in roughness length over topography
- Large z0 inconsistent with BL-scheme assumptions

OLD z0

NEW z0

Case Study

- Winter storm Quinten (10.2.2009)
- Cold start
- ECMWF \rightarrow COSMO-7 +72h \rightarrow COSMO-2 +24h

Case Study

- Winter storm Quinten (10.2.2009)
- Cold start
- ECMWF \rightarrow COSMO-7 +72h \rightarrow COSMO-2 +24h

Case Study

- Winter storm Quinten (10.2.2009)
- Cold start
- ECMWF \rightarrow COSMO-7 +72h \rightarrow COSMO-2 +24h

Impact of SSO parametrization (1 of 3)

- Enhanced flow blocking
 - fast process (already after +1h)
 - local + large scale effect over orography
 - changes in pressure of 0.15 hPa and wind up to 10 m/s

Impact of SSO parametrization (2 of 3)

- Enhanced cross-isobar flow
 - slow process (significant after +24h)
 - limited in importance by domain size
 - difference in core pressure of ~ 0.4 hPa

Impact of SSO parametrization (3 of 3)

- Reduction of resolved gravity wave activity
 - fast process
 - local and large scale effect over orography

Relevance of SSO for COSMO-2

- Amplitude of sub-grid scale orography reduced by ~ 35%
- Impact of enhanced cross-isobar flow negligible due to small domain and short integration time (+24h)
- Impact of sub-grid scale GWD negligible
- Nevertheless, non-negligible impact!

C Sensitivity: Standard deviation σ

Ο Sensitivity: Slope α

Sensitivity: Anisotropy γ

C Sensitivity: Principal axis θ

Verification

- Testchain with full assimilation cycle of COSMO-7 and COSMO-2 running with SSO parametrization
- Winter period: 29.2.2008 to 19.3.2008 (20 days)
- Summer period: 27.7.2008 to 19.8.2008 (24 days)
- Evaluation over EU, ALPS, and CH domain
- SYNOP and Upper-air verification

0 Verification (COSMO-7, EU domain)

- Positive impact in almost all parameters, especially 10m • wind speed and direction as well as total precipiation
- In contrast to DWD, no significant reduction in pressure bias •

Parameter	Score	Winter	r	Summer		Parameter	Score	Winter		Summer	
PS	ME	~	[-		CLCT	ME	~		~	
	STD	+	[+			STD	~		~	
PMSL	ME	~	[-			FBI 30%	~		~	
	STD	+	[+			FBI 80%	~		~	
T_2M	ME	~	[-		TOT_PREC	ME	++		+*	
	STD	~	[~			STD	~		~	
TD_2M	ME	~	[~			FBI 0.1 mm/12 h	~		~	
	STD	+	[+			FBI 1 mm/12 h	~		~	
DD_10M	ME	++	[++			FBI 10 mm/12 h	+		+	
	STD	+	[~		VMAX_10M	ME	+		+	
FF_10M	ME	+++		+++			STD	-		-	
	STD	+		+							

+++ a lot better

--- a lot worse -- significantly worse ++ significantly better

- worse + better

~ same

Verification (COSMO-7, EU domain)

Verification (COSMO-7/2, CH domain)

- Increase of negative bias of wind speed and direction over the Alps
- Other parameters generally positive results

Parameter	Score	Winter		Summer		Parameter	Score	Winter		Summer	
PS	ME	~	+	-	-	CLCT	ME	++	-	~	++
	STD	~	~	~	~		STD	~	~	~	~
PMSL	ME	+	+	+	+		FBI 30%	+	~	~	~
	STD	+	+	+	+		FBI 80%	++	~	~	+
T_2M	ME	+	~	*	-	TOT_PREC	ME	-**	~	+++	~
	STD	+	~	+	~		STD	+	~	-	~
TD_2M	ME	+	~	++	+		FBI 0.1 mm/12 h	++	~	-	~
	STD	+	~	+	~		FBI 1 mm/12 h	+	+	~	~
DD_10M	ME	*	-	-			FBI 10 mm/12 h	-**	~	++	~
	STD	+	~	~	~	VMAX_10M	ME	*	-*	-	-
FF_10M	ME	-*	*	*	*		STD	+	~	~	~
	STD	~	~	~	~						

--- a lot worse +++ a lot better

-- significantly worse ++ significantly better - worse + better ~ same

* contrasing bias/STDE

Verification (COSMO-2, CH domain)

Verification (Summary)

- In general positive impact for both COSMO-7 and COSMO-2 for stations outside of significant topography
- Within the Alps, wind speed and direction bias is further increased, but verification is questionable
- Impact in COSMO-2 is roughly 1/3 over boundary conditions and 2/3 due to SSO parametrization

Conclusions

- Consistent implementation of SSO drag scheme
 - Scale separation of SSO
 - Reduction of z0
- Significant impact via several processes...
 - Enhanced local + large-scale flow blocking
 - Enhanced cross-isobar flow
 - Reduction in resolved gravity wave activity
- Relevance for COSMO configurations...
 - COSMO-7: positive impact, GWD and FD relevant
 - COSMO-2: positive impact, only FD relevant, cross-isobar flow irrelevant
- Verification over significant topography problematic!

Outlook

- Comparison against non-conventional measurements
 → e.g. investigate a MAP case with flight measurements
- Investigate self-consistency by idealized simulations at different resolutions