8th International SRNWP Workshop on Nonhydrostatic Modelling 26-28 October 2009

Mesoscale ensemble prediction system using singular vector method

K. Ono¹, Y. Honda¹ and M. Kunii²

Numerical Prediction Division, Japan Meteorological Agency Meteorological Research Institute, Japan Meteorological Agency

Contents

- Outline of singular vector method at JMA
- Results of experiment with initial perturbation by singular vector method
- Effects of lateral boundary perturbation
- Summary and future plans

Development of meso ensemble prediction system at JMA

- Purpose
 - To provide probabilistic and reliability information about operational mesoscale model(MSM) at JMA
 - MSM : dx = 5km, forecast period is 15 or 33 hours
- Generation of perturbation
 - We have been researching for the best method in
 - 3 ensemble initial perturbation methods
 - Singular vector
 - Local ensemble transform Kalman filter
 - Breeding of growing mode
- Schedule
 - In 20xx, pre-operational experiment will start
 - Specifications have not been decided yet

Outline of singular vector method developing at JMA

- Singular vector method based on 2 kinds of TL/AD model
 - Meso singular vector(MSV)
 - TL/AD model is based on JMA non hydrostatic model(JMA-NHM)
 - Global targeted singular vector(GSV)
 - TL/AD model is based on global spectral model at JMA
- Purpose in this presentation
 - Which method is best performance as initial perturbation in SVs?
 - Effect of lateral boundary perturbation

1. Results of experiment with initial perturbation by SV methods

Experiments with initial perturbation

Conducted 4 ensemble forecast experiments

- Target is short range(about after half a day) forecast of precipitation
- Grid spacing of ensemble forecast(using JMA-NHM) is 20km
- MSV40
 - dx = 40 km
 - Standard experiment
- MSV80
 - Low resolution experiment(dx=80km)
- GSV
 - Simple downscaling method
 - Adopted as an initial perturbation method at *B08RDP within the perturbation methods experimented at JMA/MRI
 *the WWRP Beijing Olympic 2008
- BSV
 - Blend MSV40 and MSV80
 - To add high wave number component of MSV40 to MSV80

Research and Development Project

Specification of each experiment

Specification of calculating each SV

	MSV40	MSV80	GSV	BSV
Resolution	40km	80km	about 180km	40km/80km
Norm	Moist total energy			
Optimization time	15 hour	15hour	24hour	6hour/15hour
Number of singular vectors	10	5	5	10/5

Specification of ensemble forecast using JMA-NHM

Resolution	20km	
Number of ensemble members	11(10PTBs + 1CTL)	
Boundary perturbation	None	

Methods of generating initial perturbations

Experiment period : 24-30 June 2008. All initial is 18UTC

There was a stationary front around Japan 24-28 June 2008, 7 initials(18UTC)

Ensemble forecast : Ini.00UTC 28 June 2008, FT=06

Initial perturbation

Equivalent potential temperature on 850hPa

ROC area skill score

3hour precipitation 24-30 June 2008

Until FT=15, BSV>MSV80>MSV40>GSV After FT=15, GSV is the best performance

Reliability diagram

10mm/3hour precipitation 24-30 June 2008, FT=09

observation frequency against forecast

2. Effect of lateral boundary perturbation

Generation of lateral boundary perturbation

• To improve the score of BSV in the latter half of the forecast period

Generation of lateral boundary perturbation by GSV

- 1. Calculate 5GSVs(configuration is same as previous one)
- 2. Run control forecast and 5 perturbed forecasts using 5GSVs by JMA-NHM
- 3. PTB = PTBFCST CTLFCST
- 4. Add PTBs to lateral boundary values

Specifications of forecasts for LBPs

Forecast model	JMA-NHM	
Resolution	40km	
Initial and boundary value	Global analysis at JMA	
Forecast region		

Initial perturbation is BSV(MSV40+MSV80)

The reason for this method

- LBPs match high resolution ensemble forecasting grid
- If we use BSV as MSV40 + <u>GSV</u>(not MSV80), this method can save computation time

Ensemble spread of 3hour precipitation

Initial : 18UTC 07 July 2009, FT=24

BSV with LBPs get a larger spread near the boundaries

Ensemble spread and ROC area skill score

Initial : 18UTC 07 July 2009

BSV with LBPs is larger spread than BSV without LPBs

In the latter half of the forecast period, ROCASS improves a little by LBPs

3. Summary and future plan

Summary and future plan

- Summary
 - Conduct 4 experiments with initial perturbation using SV
 - In the first half of the forecast period, BSV showed the best performance.
 - Because of larger distribution and higher wave number
 - In the latter half of the forecast period, GSV showed the best performance.
 - Because GSV is the largest scale
 - Generate LBPs and confirm its Effects
 - Confirming the effect of lateral boundary perturbation using GSV
- Future plan
 - Research for the way of generating BSV perturbation
 - Best way of SV combination
 - Which method is best, MSV40+MSV80 or MSV40 + GSV?
 - Compare with other LBP generation method
 - Downscaling of perturbations of weekly ensemble prediction at JMA etc...

Generation of initial perturbation from MSV40

- Effect of low pass filter and comparion with MSV80

Its trancated wave length is about 300km

Effect of low pass filter and number of SVs

ROC area skill score (3hour precipitation, 2008.6.24-30)

5MSVs, rotation 10MSVs, rotation 10MSVs, LPF + rotation