Applications of high resolution transport simulations using WRF-VPRM in monitoring of greenhouse gas fluxes

> Christoph Gerbig, Roberto Kretschmer, K. Dhanyalekshmi, V. Beck, T. Koch, J. Marshall, Ute Karstens (MPI-BGC, Jena) Ravan Ahmadov (NOAA-ESRL, Boulder,

> > SRNWP Workshop, Bad Orb, 26-28th October 2009

PI-BG

Motivation

Scientific questions:

- Where and by which processes is anthropogenic CO₂ sequestered?
- What are the main feedback processes between carbon cycle and climate system?
- What is the carbon budget of a specific region (continent/country)?

SRNWP Workshop, Bad Orb, 26-28th October 2009

IPI-BG(

SRNWP Workshop, Bad Orb, 26-28th October 2009

Observational networks (EU Infrastructures)

Ecosystem Flux Measurements

Atmospheric Observing System (GHGs)

Commercial Airliner

1340.0

integrated carbon observation system

A European infrastructure dedicated to high precision monitoring of greenhouse gases

SRNWP Workshop, Bad Orb, 26-28th October 2009

MPI-BO

Global scale inverse modeling

- Global inverse modelling using remote stations
 - Tight constraint on global budget
 - Existence of NH sink ("missing sink")

Global scale inverse modeling

- Global inverse modelling using remote stations
 - Tight constraint on global budget
 - Existence of NH sink ("missing sink")
 - Estimates for continental regions
 - Interannual variations

SRNWP Workshop, Bad Orb, 26-28th October 2009

Regional scale inverse modeling

- Sub-continental scale inversions
- including continental stations
- much stronger variability

Regional scale inverse modeling

Sub-continental scale inversions

- including continental stations
- much stronger variability

Footprint Biscarosse tower 2005-05-19 15:00:00

Biscarosse CO2 measurements

SRNWP Workshop, Bad Orb, 26-28th October 2009

Example coastal station

 STILT footprints (LPDM)

MPI-BG

 Footprints "see" the continental biosphere

SRNWP Workshop, Bad Orb, 26-28th October 2009

CO₂ as seen by a high resolution model

VPRM biospheric CO₂ fluxes

fractional vegetation cover + MODIS EVI fluxes upscaled from Eddy cov. msmts.

Net Ecosystem Exchange, time 2003-07-02_01:00:00

Vegetation-Photosysthesis and Respiration Model, created at MPI-BGC

API-BGC

CO₂ as seen by a high resolution model

0 СО2 [ppm]

8

VPRM biospheric CO₂ fluxes

fractional vegetation cover + MODIS EVI fluxes upscaled from Eddy cov. msmts.

CO2 at 0.1 km, time 2003-07-02_00:00:00

WRF+CASA+VPRM, created at MPI-BGC

Net Ecosystem Exchange, time 2003-07-02_01:00:00

Vegetation-Photosysthesis and Respiration Model, created at MPI-BGC

WRF-VPRM, 10 km res. CO₂ (-366 ppm) at 150 m

[Dhanyalekshmi et al., ACPD 2009]

kshop, Bad Orb, 26-28th October 2009

SRNWP Workshop, Bad Orb, 26-28th October 2009

API-BGC

IPI-BG

API-BG

API-BGG

Uncertainties involved (continental stations)

Source of uncertainty	Туре	Magnitude	Reference
Transport Model	Advection	~ 5 ppm (summertime)	Lin and Gerbig, 2005
	PBL mixing	~ 5 ppm (summertime)	Gerbig et al, 2007
	Convection	?	
Transport Model + Flux Model	Grid resolution	~ 1 ppm @ 200km (summertime)	Gerbig et al., 2003
Flux Model	Aggregation	depending on Aggregation and Model	Gerbig et al., 2006
Measurement	Precision, accuracy	0.1 ppm (targeted)	WMO
fossil fuel CO2 signal across EU		~0.5 ppm (annual average)	

YSU scheme mixing height

MYJ scheme mixing height

Example impact PBL scheme: mixing height (6th Aug 06, 15:00)

SRNWP Workshop, Bad Orb, 26-28th October 2009

Example impact PBL scheme: CO_2 , 2nd model level (~60m)

- Use observational constraint for
 mixing height:
 - network of ceilometers (cheap Lidars)
 - radiosonde derived mixing heights

IPI-BG

Eulerian + Lagrangian vs. observations

SRNWP Workshop, Bad Orb, 26-28th October 2009

Eulerian + Lagrangian vs. observations

SRNWP Workshop, Bad Orb, 26-28th October 2009

Eulerian + Lagrangian vs. observations

SRNWP Workshop, Bad Orb, 26-28th October 2009

closing remarks

- Regional flux estimation for CO₂ require high resolution models:
 - mesoscale transport phenomena
 - better representation of observing sites
 - fluxes (models) needed at high resolutions, bridging gap to ecosystem measurements
- Mesoscale transport simulations indicate significant performance increase compared to global simulations
- Transport model improvement required — Mixing heights (additional data)
- STILT/WRF as transport adjoint for WRF:
 - Inconsistencies to be traced

PI-BG

Thank you!

WRF-VPRM modeling system setup

Vertical coordinates	Terrain-following hydrostatic pressure vertical coordinate
Basic equations	Non-hydrostatic, compressible
Grid type	Arakawa-C grid
Time integration	3 rd order Runge-Kutta split-explicit
Spatial integration	3 rd and 5 th order differencing for vertical and horizontal advection respectively; both for momentum and scalars; positive definite scheme for moisture and tracers
Domain configuration	the horizontal resolution – 10 km; size 2500x2300 km 30 vertical layers up to 100 mb;
Time step	60 sec
Physics schemes	Radiation - Rapid Radiative Transfer Model (RRTM) Longwave and Dudhia; Microphysics - WSM 3-class simple ice scheme; Cumulus - Kain-Fritsch (new Eta) scheme PBL – YSU; Surface layer – Monin-Obukhov Land-surface – NOAH LSM