

Convection-permitting simulations using explicit numerical diffusion

Wolfgang Langhans, Jürg Schmidli, Christoph Schär

Institute for Atmospheric and Climate Science, ETH Zurich

October 27, 2009

Wolfgang Langhans

Introduction

- Runge-Kutta cores using upstream-biased advection in principle demand no explicit numerical small-scale filters
- Still it is convenient to apply explicit numerical filters (e.g., aliasing, phase errors)
- Effective resolution depends on filtering of short wavelengths → Importance for CRM
- Idealized studies of squall lines show strong influence of numerical and sub-grid turbulent filtering at kilometer-scales (Takemi and Rotunno 2003)

Objectives

- Investigate kilometer-scale real-case simulations using explicit diffusion
- How's diffusion of specific prognostic variables related to convective precipitation?
- Are bulk heat and moisture budgets sensitive to explicit diffusion?

Introduction

- Runge-Kutta cores using upstream-biased advection in principle demand no explicit numerical small-scale filters
- Still it is convenient to apply explicit numerical filters (e.g., aliasing, phase errors)
- Effective resolution depends on filtering of short wavelengths → Importance for CRM
- Idealized studies of squall lines show strong influence of numerical and sub-grid turbulent filtering at kilometer-scales (Takemi and Rotunno 2003)

Objectives

- Investigate kilometer-scale real-case simulations using explicit diffusion
- How's diffusion of specific prognostic variables related to convective precipitation?
- Are bulk heat and moisture budgets sensitive to explicit diffusion?

Outline

Introduction

Linear stability theory

COSMO setup

Version: 4.3 Dynamics:

- split-explicit RK-3 scheme (Wicker and Skamarock, 2002)
- 5th-order advection, pos. definite qx advection
- Monotonic 4th-order diffusion operator (orogr. flux limiter)

Physics:

- prognostic TKE-based 1D turbulence scheme
- no cumulus scheme
- graupel scheme
- TERRA_ML

Large Alpine domain:

501 × 451 × 45

•
$$\Delta \varphi = \Delta \lambda = 0.02^{\circ}, \Delta t = 30$$
 s

IC/BC:

ECMWF

COSMO setup

Version: 4.3 Dynamics:

- split-explicit RK-3 scheme (Wicker and Skamarock, 2002)
- 5th-order advection, pos. definite qx advection
- Monotonic 4th-order diffusion operator (orogr. flux limiter)

Physics:

- prognostic TKE-based 1D turbulence scheme
- no cumulus scheme
- graupel scheme
- TERRA_ML

Large Alpine domain:

501 × 451 × 45

•
$$\Delta \varphi = \Delta \lambda = 0.02^{\circ}, \, \Delta t = 30 \, \mathrm{s}$$

IC/BC:

ECMWF

COSMO budget diagnosis

What? Extracts 3D fields of model tendencies

$$\frac{\partial \theta}{\partial t} = -ADV + \frac{L_v}{c_{pd}}S' + \frac{L_s}{c_{pd}}S^f + M_T + Q_r + M_{HD}$$

$$\frac{\partial q_x}{\partial t} = -ADV - (S' + S^f) - \frac{1}{\rho\sqrt{G}}\frac{\partial}{\partial\zeta}(\rho v_x^T q^x) + M_{qx} + M_{HDqx}$$

Aims?

- Better understanding of model behaviour
- Evaluation of Alpine budgets

Numerical sensitivity study

Run name
none
uvwpt0.75
uv0.75
p0.75
t0.75
q0.75
uvw0.4
uvw0.25
w0.75

Motivation:

How's diffusion of specific prognostic variables related to convective precipitation?

Numerical sensitivity study

Mean diurnal cycle of precipitation

Vertical velocity at 4 km MSL

Wolfgang Langhans

SRNWP 2009 Bad Orb

October 27, 2009 7 / 18

ETH ZURICH

ETH ZURICH

October 27, 2009 8/18

October 27, 2009 8/18

CETH

October 27, 2009 8/18

CETH

Wolfgang Langhans

Wolfgang Langhans

Wolfgang Langhans

Wolfgang Langhans

Wolfgang Langhans

Wolfgang Langhans

Wolfgang Langhans

Diurnal cycle of the heat budget

Linear stability theory

Following Fuhrer and Schär (2005), Kirshbaum and Durran (2004), Emanuel (1994), Drazin (2004)

$$\begin{aligned} \frac{\partial u}{\partial t} + \overline{U} \frac{\partial u}{\partial x} &= -\frac{1}{\overline{\rho}} \frac{\partial p}{\partial x} + K_m \frac{\partial^2 u}{\partial z^2} - \nu_h \nabla_h^2 \nabla_h^2 u \\ \frac{\partial v}{\partial t} + \overline{U} \frac{\partial v}{\partial x} &= -\frac{1}{\overline{\rho}} \frac{\partial p}{\partial y} + K_m \frac{\partial^2 v}{\partial z^2} - \nu_h \nabla_h^2 \nabla_h^2 v \\ \frac{\partial w}{\partial t} + \overline{U} \frac{\partial w}{\partial x} &= -\frac{1}{\overline{\rho}} \frac{\partial p}{\partial z} + K_m \frac{\partial^2 w}{\partial z^2} - \nu_v \nabla_h^2 \nabla_h^2 w \\ \frac{\partial B}{\partial t} + \overline{U} \frac{\partial B}{\partial x} &= -N^2 w + K_h \frac{\partial^2 B}{\partial z^2} - \nu_b \nabla_h^2 \nabla_h^2 B \\ \nabla \cdot \mathbf{v} &= 0 \end{aligned}$$

$$w = \hat{w} \exp(ikx + ily + imz - i\omega t)$$

$$k_h = \sqrt{(k^2 + l^2)}$$

 $u_h = u_w = v_h \quad K_h = K_m \to \quad \omega = k\overline{U} - i(\nu(k^4 + l^4) + Km^2) + \sqrt{k_h^2 N_m^2/(k_h^2 + m^2)}$

Linear stability theory

Following Fuhrer and Schär (2005), Kirshbaum and Durran (2004), Emanuel (1994), Drazin (2004)

$$\begin{aligned} \frac{\partial u}{\partial t} + \overline{U} \frac{\partial u}{\partial x} &= -\frac{1}{\overline{\rho}} \frac{\partial p}{\partial x} + K_m \frac{\partial^2 u}{\partial z^2} - \nu_h \nabla_h^2 \nabla_h^2 u \\ \frac{\partial v}{\partial t} + \overline{U} \frac{\partial v}{\partial x} &= -\frac{1}{\overline{\rho}} \frac{\partial p}{\partial y} + K_m \frac{\partial^2 v}{\partial z^2} - \nu_h \nabla_h^2 \nabla_h^2 v \\ \frac{\partial w}{\partial t} + \overline{U} \frac{\partial w}{\partial x} &= -\frac{1}{\overline{\rho}} \frac{\partial p}{\partial z} + K_m \frac{\partial^2 w}{\partial z^2} - \nu_v \nabla_h^2 \nabla_h^2 w \\ \frac{\partial B}{\partial t} + \overline{U} \frac{\partial B}{\partial x} &= -N^2 w + K_h \frac{\partial^2 B}{\partial z^2} - \nu_b \nabla_h^2 \nabla_h^2 B \\ \nabla \cdot \mathbf{v} &= 0 \end{aligned}$$

$$w = \hat{w} \exp(ikx + ily + imz - i\omega t)$$

$$k_h = \sqrt{(k^2 + l^2)}$$

$$\nu_h = \nu_w = \nu_h \quad K_h = K_m \rightarrow \quad \omega = k\overline{U} - i(\nu(k^4 + l^4) + Km^2) + \sqrt{k_h^2 N_m^2 / (k_h^2 + m^2)}$$

$$\tau = \frac{i}{\omega - k\overline{U}}$$
Weifrage Landscore SENUMP 2009 Bad Orb

Characteristic growth time

IAC **FIT** INSTITUTE FOR ATMOSPHERID AND CLIMATE SCIENCE ETH ZURICH

SRNWP 2009 Bad Orb

Characteristic growth time

Wolfgang Langhans

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE ETH ZURICH

Ă

SRNWP 2009 Bad Orb

- "Dilemma": Strong explicit diffusion → smooth ("error free") fields, but artificial reduction of convective growth
- Feedback to well-resolved scales, influencing also the bulk Alpine budgets
- Large sensitivity to explicit diffusion:
 - Diffusion of q_v,p',w little influence
 - Diffusion of u,v,t' large influence
- LST indicates that the initial convective growth is damped, especially for diffusion of u,v, and t'.
- Suggestion: Weak diffusion of u,v,w, since kinetic energy removed sufficiently, thereby permitting amplification of grid-scale perturbations

- "Dilemma": Strong explicit diffusion → smooth ("error free") fields, but artificial reduction of convective growth
- Feedback to well-resolved scales, influencing also the bulk Alpine budgets
- Large sensitivity to explicit diffusion:
 - Diffusion of q_v,p',w little influence
 - Diffusion of u,v,t' large influence
- LST indicates that the initial convective growth is damped, especially for diffusion of u,v, and t'.
- Suggestion: Weak diffusion of u,v,w, since kinetic energy removed sufficiently, thereby permitting amplification of grid-scale perturbations

- "Dilemma": Strong explicit diffusion → smooth ("error free") fields, but artificial reduction of convective growth
- Feedback to well-resolved scales, influencing also the bulk Alpine budgets
- Large sensitivity to explicit diffusion:
 - Diffusion of q_v,p',w little influence
 - Diffusion of u,v,t' large influence
- LST indicates that the initial convective growth is damped, especially for diffusion of u,v, and t'.
- Suggestion: Weak diffusion of u,v,w, since kinetic energy removed sufficiently, thereby permitting amplification of grid-scale perturbations

- "Dilemma": Strong explicit diffusion → smooth ("error free") fields, but artificial reduction of convective growth
- Feedback to well-resolved scales, influencing also the bulk Alpine budgets
- Large sensitivity to explicit diffusion:
 - Diffusion of q_v,p',w little influence
 - Diffusion of u,v,t' large influence
- LST indicates that the initial convective growth is damped, especially for diffusion of u,v, and t'.
- Suggestion: Weak diffusion of u,v,w, since kinetic energy removed sufficiently, thereby permitting amplification of grid-scale perturbations

- "Dilemma": Strong explicit diffusion → smooth ("error free") fields, but artificial reduction of convective growth
- Feedback to well-resolved scales, influencing also the bulk Alpine budgets
- Large sensitivity to explicit diffusion:
 - Diffusion of q_v,p',w little influence
 - Diffusion of u,v,t' large influence
- LST indicates that the initial convective growth is damped, especially for diffusion of u,v, and t'.
- Suggestion: Weak diffusion of u,v,w, since kinetic energy removed sufficiently, thereby permitting amplification of grid-scale perturbations

Thanks for your attention

IAC ATT INSTITUTE FOR ATMOSPHERICAND OLIVATE SCIENCE BTH ZURICH

U-wind component at $\sigma =$ 0.72 \sim 2.6 km

ACAT I SCIENCE AND CLIMATE SCIENCE ETH ZURICH

Soundings

-none -uvwpt0.75 uvw0.25 Height (m) IACIATA INSTITUTE FOR ATMOSPHERICAND OLIMATE SCIENCE ETH ZURICH 0.009 0.000 0.003 0.006 0.012 0.015 315 320 Water Vapor mixing ratio (g/g) Potential temperature (K) Equivalent potential temperature (K) Munich 12 UTC -none -uvwpt0.75 Height (m) 0.012 0.000 0.003 0.006 0.009 0.015 310 315 320 Water Vapor mixing ratio (g/g) Potential temperature (K) Equivalent potential temperature (K)

Payerne

12 UTC

Wolfgang Langhans

SRNWP 2009 Bad Orb

Diurnal cycle of the vapor budget

RUN	TOT _{CH}	PEAK _{CH}	TOT _{ALPS}	PEAK _{ALPS}
none	-00.58	-28.83		
uvwpt0.75	-37.94	-55.76	-37.26	-32.27
uv0.75	-30.23	-51.08	-27.32	-24.13
p0.75	-13.88	-17.97	+00.91	-01.25
t0.75	-27.52	-43.59	-29.06	-27.56
q0.75	-04.04	-34.17	-06.14	-04.17
uvw0.4	-17.93	-46.14	-20.22	-15.86
uvw0.25	-12.23	-35.32	-16.06	-14.21
w0.75	-05.04	-32.24	-06.52	-08.37
	(%)			

RUN	TOT _{CH}	PEAK _{CH}	TOT _{ALPS}	PEAK _{ALPS}
none	-00.58	-28.83		
uvwpt0.75	-37.94	-55.76	-37.26	-32.27
uv0.75	-30.23	-51.08	-27.32	-24.13
p0.75	-13.88	-17.97	+00.91	-01.25
t0.75	-27.52	-43.59	-29.06	-27.56
q0.75	-04.04	-34.17	-06.14	-04.17
uvw0.4	-17.93	-46.14	-20.22	-15.86
uvw0.25	-12.23	-35.32	-16.06	-14.21
w0.75	-05.04	-32.24	-06.52	-08.37
	(%)			

RUN	TOT _{CH}	PEAK _{CH}	TOT _{ALPS}	PEAK _{ALPS}
none	-00.58	-28.83		
uvwpt0.75	-37.94	-55.76	-37.26	-32.27
uv0.75	-30.23	-51.08	-27.32	-24.13
p0.75	-13.88	-17.97	+00.91	-01.25
t0.75	-27.52	-43.59	-29.06	-27.56
q0.75	-04.04	-34.17	-06.14	-04.17
uvw0.4	-17.93	-46.14	-20.22	-15.86
uvw0.25	-12.23	-35.32	-16.06	-14.21
w0.75	-05.04	-32.24	-06.52	-08.37
	(%)			

RUN	TOT _{CH}	PEAK _{CH}	TOT _{ALPS}	PEAK _{ALPS}
none	-00.58	-28.83		
uvwpt0.75	-37.94	-55.76	-37.26	-32.27
uv0.75	-30.23	-51.08	-27.32	-24.13
p0.75	-13.88	-17.97	+00.91	-01.25
t0.75	-27.52	-43.59	-29.06	-27.56
q0.75	-04.04	-34.17	-06.14	-04.17
uvw0.4	-17.93	-46.14	-20.22	-15.86
uvw0.25	-12.23	-35.32	-16.06	-14.21
w0.75	-05.04	-32.24	-06.52	-08.37
	(%)			