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@ In compressible models occur:
o Energetically relevant slow waves (e.g. advection, Rossby waves)
o Energetically irrelevant fast waves (e.g. sound waves)
o In explicit models the fast waves restrict the maximal time step size

@ One ansatz to overcome this is operator splitting
o Advantages: Every step is cheap, easy to implement, parallelization
o Disadvantages: Still explicit (i.e. only small time steps allowed especially
when used together with cut-cells), complicated derivation of order
conditions and stability results
o Another ansatz is the use of implicit methods
o Advantages: Allows very big time steps, order conditions and stability
issues are obvious
o Disadvantages: Requires solution of huge (non-)linear systems of
equations, needs efficient (parallel) preconditioners
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e Consider PDE discretized in space

@ Rosenbrock Method

Yns1 = Yo+ biki,
i=1

i—1 i
Tf yn+zaijkj +AtWZ'Vijkj7 1=1,..,s.

j=1 j=1

ks

where W J,, = f('yn) -
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@ Order conditions

Order p | Conditions
1 Sl bi=1
2 OH Qbal —1/2
3 Zz 2ba —1/3

PO 323 Qba”aj_l/ﬁ
P 321 2bawd =0
Zz 327 —5 bivija; =0
S b2 = 0
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@ Rosenbrock-W method based on RK3

0 aé ) vy )
1—-9~+24 1-12
1/3 1 1/3 —9136] —9+3Zs~, v
/2] 0 1/2 0 “1/4+2y 1/4-3y
‘ 0 0 1 0 0 0
A-Matrix I'-Matrix
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e Type of approximate Jacobian

e Approximate matrix factorization
f=h+fo, J=ditda, [—a7W =1 —~AtJ1)I —~vAtS)
e Jacobian from a low order discretization
fo=f, W=Jg
o Partial Jacobian, split with respect to space or processes
f=h+f, W=.4

o Combine above ideas
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o Unit interval, 100 grid cells, comparison of a uniformly spaced grid and
a uniformly grid cell with one small grid cell hgman = 1/10000.
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o Unit interval, 100 grid cells, comparison of a uniformly spaced grid and
a uniformly grid cell with one small grid cell hgman = 1/10000.
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@ Uniformly grid cell with one small grid cell Agpay = 1/10000, one and
tenth revolution of the profile, two different limiters
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Write numerical solutions as:
Y1 Y(tm + c1 At)
Y, = : ~ : € R, Fp = f(Y,) € R
Yins y(tm + CSAt)

Runge-Kutta methods (for autonomous systems) read:
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Peer Method
Write numerical solutions as:
Y1 y(tm + clAt)
Y, = :

Q

: : c RSX"7 Fm — f(Ym) c Rsxn
Yins Y(tm + csAt)

Runge-Kutta methods (for autonomous systems) read:
Yo =Yn_1s+ AtAF,,
Implicit peer methods are defined by:

Yimi = BiYm—1 + AtA;Fou1 + AtR Frp+ Aty f (Yoni)

Performing one Newton step results in the considered class of linearly
implicit peer methods:

Yo (I=hyJ)" = BY 1+ AtAF, 1+ AtRF,+AtGYy 1 J '+ AtHY , J
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e Order conditions AB(k) = 0, @(k) =0, k < s, can be written in
compact matrix form
Bl1=1,
A=CVoD Wi = B(C - DHViD 'Vt — RV VY,
G=-TVVy' - HV V!
with 1= (1,...,1)T, C = diag(cy,...,cs), I =1,
D = diag(1,2,...,s),
1o - 51 I =1 - (e —1)%71
Vo=1: + ., and Vi = : ) _
1 ¢ - ! 1 co—1 - (c5— 1)1
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Order conditions AB(k) = 0, @(k) =0, k < s, can be written in
compact matrix form
Bl=1,
A=CVoD 'V = B(C - DViD 'Vt — RVV,
G=-TVVy' - HV V!

with 1= (1,...,1)T, C = diag(cy,...,cs), I =1,
D = diag(1,2,...,s),

1o - 51 I =1 - (e —1)%71
Vo=1: + ., and V; =

1 ¢y oo o571 1 co—1 -+ (cs—1)*"1

In the remainder we will concentrate on second-order methods with
s = 2 stages. Furthermore we choose ¢; = 1 so that Y5 ~ y(tm+1)-

Remaining parameters are c1, 7, b1, bo1, 721 and hoi. These will be
optimized with respect to good stability properties.



Linear stability theory

© Linecar stability theory
@ Linearization of Euler equations
o A-stability
e Amplitude and phase properties



Linear stability theory

®00000

@ One-dimensional compressible Euler equations in conservative form:
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@ One-dimensional compressible Euler equations in conservative form:

_ o
- Oz
. _8puu _ @
S
. dpub
RpO\ ==
b= ( DG )
e Elimination of pressure:
o _ op o
or  0pf Ox
Op _ R (Rp&)ﬁ _ 1 (Rp@)ﬁ _ a
b pi(1—r)\ pf pO(1 — k) \ p§ 0

with cg the speed of sound
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@ Use of product rule for

dpuu 5 0p dpu
or u8x+2u8x
dpub _ _uaap +9% apb

ox Ox ox tu or
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@ Use of product rule for

dpuu 5 0p dpu
= — _— 2 —_—
ox oz e oz
dpub dp dpu apb
N D R Dt R P
ox e + ox o ox
@ results in the nonlinear Euler equations in compact form
P 0 1 02 Pz
pul =—|—-u? 2u c—; (pu)e
—ufd 6 wu (00)z
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@ Use of product rule for

Opuu  ,0p dpu
ox u Ox u Ox

Opud _Op dpu apb
or = o 0% T

@ results in the nonlinear Euler equations in compact form:

p 0 1 0 Pz

. 2
pul = — —u? 2u CT; (pu)z
pl —ufd 0 u (00)z

e Linearization by considering the disturbed quantities (e.g. p' := p — D)
and dropping all nonlinear terms:

/

I 0 1 0 o
(pu) | =—|-u* 2u || (pw);
5(p0)’ —u1w) \5(p0);
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e To save storage and gain computational efficiency we make two
simplifications for the Jacobian J:

e Use Jacobian of the advection form of the Euler equations
o Use first-order upwind scheme for spatial discretization

e Use pu’ ~ (pu)’ — up instead of (pu)’, i.e. use:

. 1 00 0 1 0 1 0 0 u 1 0
M=—|-u 1 0| |-u 2u E&||au 1 0)=—{0 uw 2
0 0 1 -u 1 u 0 0 1 0 1 u
e It holds: )
4 a1 Pl
o | =—{o @ &)@,
L(phy 0 1 u) \5(p0),
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@ Variables are defined on a staggered grid
j=1/2 oGt/
| j—1 | J | j+1 |

........ I 1 i

pu 56? ou f;’a pu 59 pu

e For investigation of spatial discretizations perform von Neumann
stability analysis, e.g. it holds:

pu(t’ mj+1/2) = pu(t)eik’zwrl/z
eik’xj

dpu
- pult)—x (e

ox (t,x;) -

ikAx ikAx
2
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[e]ele] lole)

@ Variables are defined on a staggered grid
j—1/2 o j+1/2
| j—1 | J | j+1 |

........ I 1 i

pu 56? ou f;’a pu 59 pu

e For investigation of spatial discretizations perform von Neumann
stability analysis, e.g. it holds:

pu(t’ mj+1/2) = pu(t)eik’zwrl/z
eik’xj

apu ikAx ikAx
- = t L e
ox (t,x;) pU() Az (e € )
o Three spatial discretizations appear:
1 —ikAz
Dl = E(l — € S )
1 ikAx ikAx
D2 = Fx(e kQA — e kZA )
1 ) . )
Dg _ (QezkAa: +3— 667110Ax + ef2zkAw)
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o Using these operators results in the ODE:

o 0 Dy 0 o
(pu) | = = | —u?D3 2uD3 D, (pu)’
5 (p0) —uDs Dy uDs 5(00)’

o wD; Dy 0 o
pu’' =—| 0 uD; Dy ou’
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o Using these operators results in the ODE:

o 0 Dy 0 o
(pu) | = = | —u?D3 2uD3 D, (pu)’
3 (pd)’ —uDs Dy uDs 5(00)’

o For the Jacobian we instead use the matrix which belongs to:

o wD; Dy 0 o
pu’' =—| 0 uD; Dy ou’
(p0) 0 Dy uh (p0)

o Remark: While M and M are similar the matrices

0 D- 0 _ uD1  Ds 0
A= —E2D3 2uDs C?DQ and A= 0 uDq C§D2
—uD3 Do uDs 0 D>  uD,

are not similar.
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Eigenvalues of correct and simplified Jacobian

Eigenvalues of correct Jacobian Eigenvalues of simplified Jacobian
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@ Application of the peer method to the Dahlquist test equation
y=X\y
leads to:
(1-AtyJ)Y,, = BY 1 +ALANY 1+ AtRAY , +ALG T Y, 1 +AtHJY,,
e With notations z := AtA and z := AtJ it holds:
Y= —2R—Z(yI + H)) " (B+ 24+ 2G)Y,, 1

@ Side conditions for optimization are

e A-stability in common sense, i.e. for z = z
o A-stability for simplified Jacobian, i.e. for Rez = 2.5Rez, Imz = Imz
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(1]

o The analytical solution of the Dahlquist test equation satisfies

Y(tm) = ey(tm-1) = eRezeiImzy(tm—l)a

i.e. the analytical solution has

o the amplification factor e®¢*

o the relative phase speed 1
@ Let A be an eigenvalue of the amplification matrix
(I —2R—Z(yI + H))"Y(B + 24 + ZQ) of a peer method applied to the
Dahlquist test equation

o The amplification factor is |)|
arctan {{zi
ImA

o The relative phase speed is
e Optimization goal are good amplitude and phase errors for the case
z = (—0.05 + i)Imz (i.e. eigenvalues of advection and acoustics) when
using the simplified Jacobian (i.e. for Rez = 2.5Rez, Imz = Imz)
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Amplitude and phase for the simplified Jacobian
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© Numerical tests
@ The 2D compressible Euler equations
@ Rising bubble
o Flow over mountain
@ Zeppelin test
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Numerical tests

Opu _ Odpuu  Jpwu R Opb
ot~ ox 9z 1-k oz
opw dpuw  dpww R 0pb
ot~ or 9z 1-w'0z M
dp0  Oput)  Opwb
ot dx 0z
RpoN\ 7=
"= ()

correct Jacobian  simplified Jacobian ratio
1D | 3D3 +4D5 =22 3Dy +3D; =12 55%
2D | 6Dy + 14D3 =68 6Dy +8D; =28 41%
3D | 9D, +30D3 =138 9D, + 15D; =48  35%




Rising bubble

Potential Temperature

Numerical tests
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Numerical tests
o

Flow over mountain

] Witch of Agnesi mountain © Vertical Velocity
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Zeppelin test
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e is A-stable in the common sense and for the simplified Jacobian
e has acceptable amplitude and phase errors

@ Despite of the large CFL numbers the solutions of the linearly implicit
peer method are as good as the solutions computed with the explicit
method with tiny time steps

@ Only exception is the transported rising bubble where the impact of
damping and phase errors is visible, but

o the explicit method is a three-stage method, there is no explicit
two-stage method which is stable with the time steps used in the first
test

o the implicit peer method might not be the best one, perhaps there are
better optimization criteria
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Outlook

@ Determination of the practical speed-up when using the simplified
Jacobian instead of the correct one
e Mixing of linearly implicit and explicit peer methods:

e Use of full Jacobian in regions where orography results in cut-cells
o In free regions without cut-cells only the parts of the Jacobian which
come from acoustics have non-zeros entries

@ Such a peer method should

e compute with time step sizes restricted only by the CFL condition of
the underlying explicit method in the free regions
e produce as good results as the split-explicit peer method
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Danke fiir eure/Thre Aufmerksamkeit!
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