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Cut cell approach with small grid cells
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In compressible models occur:
Energetically relevant slow waves (e.g. advection, Rossby waves)
Energetically irrelevant fast waves (e.g. sound waves)

In explicit models the fast waves restrict the maximal time step size
One ansatz to overcome this is operator splitting

Advantages: Every step is cheap, easy to implement, parallelization
Disadvantages: Still explicit (i.e. only small time steps allowed especially
when used together with cut-cells), complicated derivation of order
conditions and stability results

Another ansatz is the use of implicit methods
Advantages: Allows very big time steps, order conditions and stability
issues are obvious
Disadvantages: Requires solution of huge (non-)linear systems of
equations, needs efficient (parallel) preconditioners
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Consider PDE discretized in space

y′ = f(y)

Rosenbrock Method

yn+1 = yn +
s∑
i=1

biki,

ki = τf

yn +
i−1∑
j=1

aijkj

+ ∆tW
i∑

j=1

γijkj , i = 1, ..., s.

where W ≈ Jn = f(′yn) .
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Order conditions
Order p Conditions

1
∑s
i=1 bi = 1

2
∑s
i=2 biai = 1/2∑s
i=2 bidi = 0

3
∑s
i=2 bia

2
i = 1/3∑s

i=3

∑i−1
j=2 biaijaj = 1/6∑s

i=3

∑i−1
j=2 biaijdj = 0∑s

i=3

∑i−1
j=2 biγijaj = 0∑s

i=2 bid
2
i = 0
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Rosenbrock-W method based on RK3
0

1/3 1/3
1/2 0 1/2

0 0 1

γ γ
1−9γ+24γ2

−9+36γ
1−12γ2

−9+36γ γ

0 −1/4 + 2γ 1/4− 3γ γ
0 0 0

A-Matrix Γ-Matrix
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Type of approximate Jacobian
Approximate matrix factorization

f = f1 + f2, J = J1 + J2, I − γτW = (I − γ∆tJ1)(I − γ∆tJ2)

Jacobian from a low order discretization

fL ≈ f, W = JL

Partial Jacobian, split with respect to space or processes

f = f1 + f2, W = J1

Combine above ideas



Rosenbrock and Peer methods Linear stability theory Numerical tests Conclusions and outlook

Type of approximate Jacobian
Approximate matrix factorization

f = f1 + f2, J = J1 + J2, I − γτW = (I − γ∆tJ1)(I − γ∆tJ2)

Jacobian from a low order discretization

fL ≈ f, W = JL

Partial Jacobian, split with respect to space or processes

f = f1 + f2, W = J1

Combine above ideas



Rosenbrock and Peer methods Linear stability theory Numerical tests Conclusions and outlook

Type of approximate Jacobian
Approximate matrix factorization

f = f1 + f2, J = J1 + J2, I − γτW = (I − γ∆tJ1)(I − γ∆tJ2)

Jacobian from a low order discretization

fL ≈ f, W = JL

Partial Jacobian, split with respect to space or processes

f = f1 + f2, W = J1

Combine above ideas



Rosenbrock and Peer methods Linear stability theory Numerical tests Conclusions and outlook

Type of approximate Jacobian
Approximate matrix factorization

f = f1 + f2, J = J1 + J2, I − γτW = (I − γ∆tJ1)(I − γ∆tJ2)

Jacobian from a low order discretization

fL ≈ f, W = JL

Partial Jacobian, split with respect to space or processes

f = f1 + f2, W = J1

Combine above ideas



Rosenbrock and Peer methods Linear stability theory Numerical tests Conclusions and outlook

Type of approximate Jacobian
Approximate matrix factorization

f = f1 + f2, J = J1 + J2, I − γτW = (I − γ∆tJ1)(I − γ∆tJ2)

Jacobian from a low order discretization

fL ≈ f, W = JL

Partial Jacobian, split with respect to space or processes

f = f1 + f2, W = J1

Combine above ideas



Rosenbrock and Peer methods Linear stability theory Numerical tests Conclusions and outlook

Unit interval, 100 grid cells, comparison of a uniformly spaced grid and
a uniformly grid cell with one small grid cell hsmall = 1/10000.
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Peer Method
Write numerical solutions as:

Ym :=

Ym1

...
Yms

 ≈
y(tm + c1∆t)

...
y(tm + cs∆t)

 ∈ Rs×n, Fm := f(Ym) ∈ Rs×n

Runge-Kutta methods (for autonomous systems) read:

Ym = Ym−1,s + ∆tAFm

Explicit peer methods are defined by:

Ymi = BiYm−1 + ∆tAiFm−1 + ∆tRiFm

+∆tγf(Ymi)

Performing one Newton step results in the considered class of linearly
implicit peer methods:

Ym(I−hγJ)T = BYm−1+∆tAFm−1+∆tRFm+∆tGYm−1J
T+∆tHYmJT
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Order conditions AB(k) = 0, ÂB(k) = 0, k ≤ s, can be written in
compact matrix form

B1l = 1l,

A = CV0D
−1V −1

1 −B(C − I)V1D
−1V −1

1 −RV0V
−1
1 ,

G = −ΓV0V
−1
1 −HV0V

−1
1

with 1l = (1, . . . , 1)T , C = diag(c1, . . . , cs), Γ = γI,
D = diag(1, 2, . . . , s),

V0 =

1 c1 · · · cs−1
1

...
...

. . .
...

1 cs · · · cs−1
s

 and V1 =

1 c1 − 1 · · · (c1 − 1)s−1

...
...

. . .
...

1 cs − 1 · · · (cs − 1)s−1

 .

In the remainder we will concentrate on second-order methods with
s = 2 stages. Furthermore we choose cs = 1 so that Yms ≈ y(tm+1).
Remaining parameters are c1, γ, b11, b21, r21 and h21. These will be
optimized with respect to good stability properties.
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One-dimensional compressible Euler equations in conservative form:

ρ̇ = −∂ρu
∂x

ρ̇u = −∂ρuu
∂x

− ∂p

∂x

ρ̇θ = −∂ρuθ
∂x

p =
(Rρθ
pκ0

) 1
1−κ

Elimination of pressure:

∂p

∂x
=

∂p

∂ρθ

∂ρθ

∂x

∂p

∂ρθ
=

R

pκ0 (1− κ)

(Rρθ
pκ0

) κ
1−κ

=
1

ρθ(1− κ)

(Rρθ
pκ0

) 1
1−κ

=
c2s
θ

with cs the speed of sound

cs :=

√
1

ρ(1− κ)

(Rρθ
pκ0

) 1
1−κ
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Use of product rule for

∂ρuu

∂x
= −u2 ∂ρ

∂x
+ 2u

∂ρu

∂x
∂ρuθ

∂x
= −uθ ∂ρ

∂x
+ θ

∂ρu

∂x
+ u

∂ρθ

∂x

results in the nonlinear Euler equations in compact form: ρ̇
ρ̇u

ρ̇θ

 = −

 0 1 0
−u2 2u c2s

θ
−uθ θ u

 ρx
(ρu)x
(ρθ)x


Linearization by considering the disturbed quantities (e.g. ρ′ := ρ− ρ)
and dropping all nonlinear terms: ρ̇′

˙(ρu)′
1
θ

˙(ρθ)′

 = −

 0 1 0
−u2 2u c2s
−u 1 u


︸ ︷︷ ︸

 ρ′x
(ρu)′x
1
θ
(ρθ)′x


M
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To save storage and gain computational efficiency we make two
simplifications for the Jacobian J :

Use Jacobian of the advection form of the Euler equations
Use first-order upwind scheme for spatial discretization

Use ρu′ ≈ (ρu)′ − uρ instead of (ρu)′, i.e. use:
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Variables are defined on a staggered grid

For investigation of spatial discretizations perform von Neumann
stability analysis, e.g. it holds:

ρu(t, xj+1/2) = ρu(t)eikxj+1/2

⇒ ∂ρu

∂x

∣∣∣
(t,xj)

= ρu(t)
eikxj

∆x
(e

ik∆x
2 − e− ik∆x

2 )

Three spatial discretizations appear:

D1 =
1

∆x
(1− e−ik∆x)

D2 =
1

∆x
(e

ik∆x
2 − e− ik∆x

2 )

D3 =
1

6∆x
(2eik∆x + 3− 6e−ik∆x + e−2ik∆x)
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Using these operators results in the ODE: ρ̇′

˙(ρu)′
1
θ

˙(ρθ)′

 = −

 0 D2 0
−u2D3 2uD3 c2sD2

−uD3 D2 uD3

 ρ′

(ρu)′
1
θ
(ρθ)′


For the Jacobian we instead use the matrix which belongs to: ρ̇′

˙ρu′
1
θ

˙(ρθ)′

 = −

uD1 D2 0
0 uD1 c2sD2

0 D2 uD1

 ρ′

ρu′
1
θ
(ρθ)′


Remark: While M and M̃ are similar the matrices

A :=

 0 D2 0
−u2D3 2uD3 c2sD2

−uD3 D2 uD3

 and Ã :=

uD1 D2 0
0 uD1 c2sD2

0 D2 uD1


are not similar.
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Eigenvalues of correct and simplified Jacobian
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Application of the peer method to the Dahlquist test equation

ẏ = λy

leads to:

(1−∆tγJ)Ym = BYm−1+∆tAλYm−1+∆tRλYm+∆tGJYm−1+∆tHJYm

With notations z := ∆tλ and z̃ := ∆tJ it holds:

Ym = (I − zR− z̃(γI +H))−1(B + zA+ z̃G)Ym−1

Side conditions for optimization are
A-stability in common sense, i.e. for ez = z
A-stability for simplified Jacobian, i.e. for Reez = 2.5Rez, Imez = Imz
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Stability regions for exact and simplified Jacobian
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The analytical solution of the Dahlquist test equation satisfies

y(tm) = ezy(tm−1) = eRezeiImzy(tm−1),

i.e. the analytical solution has
the amplification factor eRez

the relative phase speed 1

Let λ be an eigenvalue of the amplification matrix
(I − zR− z̃(γI +H))−1(B + zA+ z̃G) of a peer method applied to the
Dahlquist test equation

The amplification factor is |λ|
The relative phase speed is

arctan Imλ
Reλ

Imλ

Optimization goal are good amplitude and phase errors for the case
z = (−0.05 + i)Imz (i.e. eigenvalues of advection and acoustics) when
using the simplified Jacobian (i.e. for Rez̃ = 2.5Rez, Imz̃ = Imz)
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Amplitude and phase for the simplified Jacobian
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3 Numerical tests
The 2D compressible Euler equations
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Flow over mountain
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4 Conclusions and outlook
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∂ρ

∂t
= −∂ρu

∂x
− ∂ρw

∂z
∂ρu

∂t
= −∂ρuu

∂x
− ∂ρwu

∂z
− R

1− κ
π
∂ρθ

∂x
∂ρw

∂t
= −∂ρuw

∂x
− ∂ρww

∂z
− R

1− κ
π
∂ρθ

∂z
− ρg

∂ρθ

∂t
= −∂ρuθ

∂x
− ∂ρwθ

∂z

π =
(Rρθ
p0

) κ
1−κ
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(Rρθ
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) κ
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correct Jacobian simplified Jacobian ratio
1D 3D2 + 4D3 = 22 3D2 + 3D1 = 12 55%
2D 6D2 + 14D3 = 68 6D2 + 8D1 = 28 41%
3D 9D2 + 30D3 = 138 9D2 + 15D1 = 48 35%
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Rising bubble
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Conclusions

Development of a linearly implicit two-stage peer method which
is second-order independently of the Jacobian
is A-stable in the common sense and for the simplified Jacobian
has acceptable amplitude and phase errors

Despite of the large CFL numbers the solutions of the linearly implicit
peer method are as good as the solutions computed with the explicit
method with tiny time steps
Only exception is the transported rising bubble where the impact of
damping and phase errors is visible, but

the explicit method is a three-stage method, there is no explicit
two-stage method which is stable with the time steps used in the first
test
the implicit peer method might not be the best one, perhaps there are
better optimization criteria
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Outlook

Determination of the practical speed-up when using the simplified
Jacobian instead of the correct one
Mixing of linearly implicit and explicit peer methods:

Use of full Jacobian in regions where orography results in cut-cells
In free regions without cut-cells only the parts of the Jacobian which
come from acoustics have non-zeros entries

Such a peer method should
compute with time step sizes restricted only by the CFL condition of
the underlying explicit method in the free regions
produce as good results as the split-explicit peer method
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