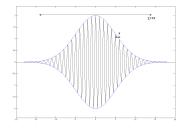
Full Model

Validation of an extended non-linear WKB theory for gravity wave propagation



9th Int. SRNWP-Workshop on Nonhydrostatic Modelling May 16-18, 2011, Bad Orb

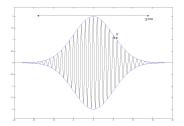
F. Rieper, U. Achatz

Institut für Atmosphäre und Umwelt, Goethe-Uni Frankfurt

Full Model	WKB Model	Validation	Summary

WKB as parametrization scheme for GWs

- Simple example why we need parametrizations...
- Full model must resolve waves
 - \Rightarrow CPU time \sim 3 h
- ► WKB model does not need to resolve waves ⇒ CPU time ~ 10 s



Full Model	WKB Model 0000000	Validation	Summary

Contents

pincFloit: Full model

- Pseudo-incompressible equations
- Implementation

WKB: Reduced model

- review WKB for GW
- Implementation

Validation

► Full model <==> WKB model

Full model: Equations

Sound-proof pseudo-incompressible equations [Durran, 1989]

Full Model	WKB Model	Validation	Summary
0000			
Governing Equations			

The pseudo-incompressible equations (scaled, conservative) Background: $\bar{\rho}(z), \bar{\theta}(z), \bar{p}(z)$

$$\frac{\partial \bar{p}}{\partial z} = -\bar{\rho}g, \quad \bar{\rho}\bar{\theta} = \bar{p}^{1/\gamma}$$

Full Model	WKB Model	Validation	Summary
0000			
Governing Equations			

The pseudo-incompressible equations (scaled, conservative)

Background: $\bar{\rho}(z), \bar{\theta}(z), \bar{p}(z)$

$$\frac{\partial \bar{p}}{\partial z} = -\bar{\rho}g, \quad \bar{\rho}\bar{\theta} = \bar{p}^{1/\gamma}$$

Variables: ρ^*, \mathbf{u}, π

$$\rho^*\theta:=\bar\rho\bar\theta\Rightarrow\rho^*=f(\theta,\ {\rm not}\ \pi)$$

Full Model	WKB Model	Validation	Summary
0000			
Governing Equations			

The pseudo-incompressible equations (scaled, conservative) Background: $\bar{\rho}(z), \bar{\theta}(z), \bar{\rho}(z)$ Exner pressure

$$rac{\partial ar{p}}{\partial z} = -ar{
ho}g, \quad ar{
ho}ar{ heta} = ar{p}^{1/\gamma}$$

$$\pi = \left(\frac{p}{p_0}\right)^{\kappa}, \quad \kappa = \frac{R}{c_p}, \quad \gamma = \frac{c_p}{c_V}$$

Variables: ρ^*, \mathbf{u}, π

$$\rho^*\theta := \bar{\rho}\bar{\theta} \Rightarrow \rho^* = f(\theta, \text{ not } \pi)$$

Full Model	WKB Model	Validation	Summary
0000	000000	00000	
Governing Equations			

The pseudo-incompressible equations (scaled, conservative) Background: $\bar{\rho}(z), \bar{\theta}(z), \bar{p}(z)$

 $\frac{\partial \bar{p}}{\partial z} = -\bar{\rho}g, \quad \bar{\rho}\bar{\theta} = \bar{p}^{1/\gamma}$

Variables: ρ^*, \mathbf{u}, π

$$\rho^*\theta := \bar{\rho}\bar{\theta} \Rightarrow \rho^* = f(\theta, \text{ not } \pi)$$

Exner pressure

$$\pi = \left(\frac{p}{p_0}\right)^{\kappa}, \quad \kappa = \frac{R}{c_p}, \quad \gamma = \frac{c_p}{c_V}$$

Fluctuations

$$\pi' = \pi - \bar{\pi}, \qquad \theta' = \theta - \bar{\theta}$$

Full Model	WKB Model	Validation	Summary
0000	000000	00000	
Governing Equations			

The pseudo-incompressible equations (scaled, conservative)

Background: $\bar{\rho}(z), \bar{\theta}(z), \bar{p}(z)$

$$\frac{\partial \bar{p}}{\partial z} = -\bar{\rho}g, \quad \bar{\rho}\bar{\theta} = \bar{p}^{1/\gamma}$$

Variables: ρ^*, \mathbf{u}, π

Exner pressure

$$\pi = \left(\frac{p}{p_0}\right)^{\kappa}, \quad \kappa = \frac{R}{c_p}, \quad \gamma = \frac{c_p}{c_V}$$

Fluctuations

 $\rho^*\theta:=\bar{\rho}\bar{\theta} \Rightarrow \rho^*=f(\theta, \ {\rm not} \ \pi) \qquad \qquad \pi'=\pi-\bar{\pi}, \qquad \theta'=\theta-\bar{\theta}$

Prognostic and diagnostic equations:

$$\rho_t^* + \nabla \cdot (\rho^* \mathbf{u}) = 0$$
$$(\rho^* \mathbf{u})_t + \nabla \cdot (\rho^* \mathbf{u} \circ \mathbf{u}) + \frac{1}{\operatorname{Ma}^2 \kappa} \bar{\rho} \bar{\theta} \nabla \pi' = \frac{1}{\operatorname{Fr}^2} \rho^* \frac{\theta'}{\bar{\theta}} \mathbf{k} + \frac{1}{\operatorname{Re}} \operatorname{Visc}$$
$$\nabla \cdot (\bar{\rho} \bar{\theta} \mathbf{u}) = \operatorname{Heating}$$

Full model: Implementation

Conserving mass and momentum with FVM

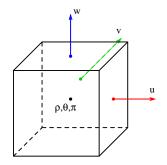
Full Model	WKB Model	Validation	Summary
0000			
Implementation			

Spatial Discretisation

- Data structure: C-grid
- Conservative treatement of mass and momentum transport

$$\nabla \cdot \quad \rightarrow \quad \frac{f_{i+1/2} - f_{i-1/2}}{\Delta x} + \dots$$

 $f_{i+1/2} = \begin{cases} \text{MUSCL: 2nd order upwind} \\ \text{ALDM: implicit LES} \end{cases}$



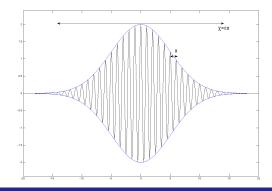
WKB: Equations

A theory for wave packet propagation

Full Model	WKB Model	Validation	Summary
Equations			

WKB - A reduced model for wave propagation

- ▶ Wentzel, Kramers and Brillouin for Schrördinger eq. (1926)
- non-linear extension based on multi-scale asymptotics (Achatz, Klein, Senf 2010)
- Asymptotic Ansatz:



Full Model	WKB Model	Validation	Summary
Equations			

WKB - A reduced model for wave propagation

Asymptotic Ansatz -> Euler equations:

$$\begin{split} \tilde{u} &= U_{\mathbf{0}}^{(0)} + \mathcal{R} \big[U_{1}^{(0)} \exp(i\frac{\phi}{\varepsilon}) \big] \\ &+ \varepsilon \big[U_{\mathbf{0}}^{(1)} + \mathcal{R} \sum_{\alpha=1}^{\infty} U_{\alpha}^{(1)} \exp(i\alpha\frac{\phi}{\varepsilon}) \big] \\ &+ \mathcal{O}(\varepsilon^{2}) \end{split}$$

with

 $U = U(\tau, \chi, \zeta), \quad \tau = \varepsilon t, \quad \chi = \varepsilon x, \quad \zeta = \varepsilon z, \quad \varepsilon = L/H_{\theta}$

Full Model	WKB Model	Validation	Summary
0000	000000	00000	
Equations			

Linear theory (classical): transport of wave properties

Dispersionrelation:

$$\hat{\omega}^2 = N^2 \frac{k^2}{k^2 + m^2}$$

Transport along rays:

$$\frac{\mathbf{D}k}{\mathbf{D}\tau} = 0 \qquad \text{with} \qquad \frac{\mathbf{D}}{\mathbf{D}\tau} = \frac{\partial}{\partial\tau} + \mathbf{c}_g \cdot \nabla_{\chi,\zeta}$$
$$\frac{\mathbf{D}m}{\mathbf{D}\tau} = -k\frac{\partial U_0^{(0)}}{\partial\zeta} \qquad \text{and} \qquad \mathbf{c}_g = \left(U_0^{(0)} + \frac{\partial\hat{\omega}}{\partial k}, \frac{\partial\hat{\omega}}{\partial m}\right)$$

Transport of wave action:

$$\frac{\partial}{\partial \tau} \left(\frac{\tilde{E}}{\hat{\omega}} \right) + \nabla \cdot \left(\mathbf{c}_g \frac{\tilde{E}}{\hat{\omega}} \right) = 0$$

Full Model	WKB Model	Validation	Summary
	0000000	00000	
Equations			

Non-linear theory -> mean flow & higher harmonics

• OLD: Change of mean flow due to GW:

 $\Rightarrow U_0^{(0)}(\tau)$

NEW: Second harmonics can be calculated

$$\Rightarrow U_2^{(1)} \exp(\frac{2i\phi}{\varepsilon})$$

▶ NEW: No further harmonics

$$\Rightarrow U_{\alpha}^{(1)} = 0, \ \alpha > 2$$

Validation

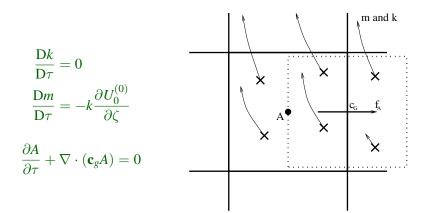
Implementation

WKB: Implementation

Euler-Lagrangian transport

Full Model	WKB Model ○○○○○○●	Validation	Summary
Implementation			

Euler-Lagrangian transport



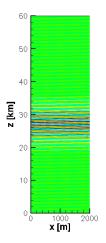
Full vs. WKB model

Using a 1D gravity wave packet

Validation

Numerical Validation of non-linear WKB

Test case data: Domain: $1.2 \text{ km} \times 60 \text{ km}$ Grid: 64×800 Atmosphere: isothermal, 300 K Wave: $\lambda_x = 1.2 \text{ km}, \lambda_z = 1.0 \text{ km}$ z-Shape: Gaussian, $\sigma_z = 5 \text{ km}$ x-Shape: const height \Rightarrow 1D-wave packet Amplitude: $a_0 = 0.1, \max(\theta'_0) = 0.31 \text{ K}$



Full Model	WKB Model 0000000	Validation ●0000	Summary
Hovmöller Diagrams			

Mean flow

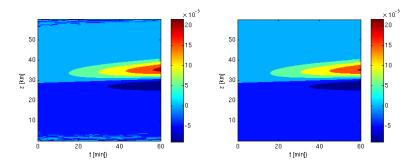


Figure: Hovmöller diagram of GW-induced mean flow for the full model (left) and the WKB model (right)

Full Model	WKB Model 0000000	Validation ○●○○○	Summary
Hovmöller Diagrams			

Wave number 1

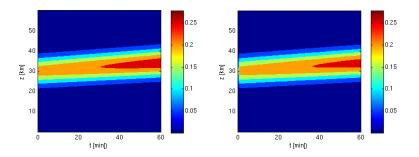


Figure: Hovmöller diagram of wave number m = 1 zonal velocity for the full model (left) and the WKB model (right)

Full Model	WKB Model 0000000	Validation 00●00	Summary
Hovmöller Diagrams			

Wave number 2

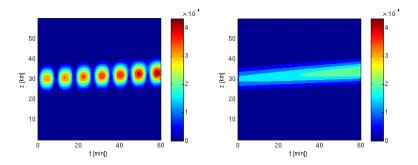


Figure: Hovmöller diagram of wave number m = 2 zonal velocity for the full model (left) and the WKB model (right)

Full Model	WKB Model 0000000	Validation ○○○●○	Summary
Hovmöller Diagrams			

Wave number 3

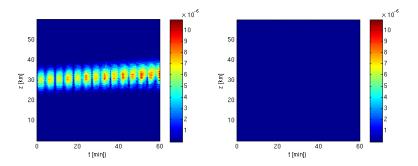


Figure: Hovmöller diagram of wave number m = 3 zonal velocity for the full model (left) and the WKB model (right)

Full Model	WKB Model	Validation ○○○○●	Summary
Time-Max-Plots			

Wave number 2 and 3: Oscillatory amplitude

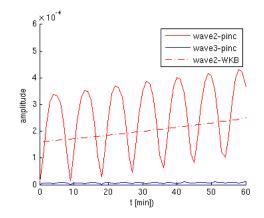


Figure: Amplitudes of wave 2 and 3 of the zonal velocity.

Full Model	WKB Model	Validation	Summary

Summary and Outlook

pincFloit: Full model

- Pseudo-incompressible equations
- Implementation

WKB: Reduced model

- review WKB for GW
- Implementation

Validation

Full model <==> WKB model

Full Model	WKB Model	Validation	Summary

Summary and Outlook

pincFloit: Full model

- Pseudo-incompressible equations
- Implementation

WKB: Reduced model

- review WKB for GW
- Implementation

Validation

► Full model <==> WKB model

Thank you for your attention!