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Introduction of the problem (1)

ALADIN/CHMI operational forecast

07-Nov-2010, 00 UTC + 6 h

∆x = 4.7 km, linear grid, 87L

2TL SISL scheme, ∆t = 180 s, hydrostatic
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Introduction of the problem (2)

• from time to time, spurious ≈4∆x noise could be observed in

cloudiness and precipitation fields forecasted by ALADIN/CHMI

• one of the first suspects was model physics, more specifically

convection triggering based on moisture convergence

• it was believed that noise could be the result of Gibbs waves in

spectrally computed moisture convergence field

• when Gibbs waves were prevented by non-oscilatory finite difference

computation of moisture convergence, there was practically no

impact on noise in precipitation field ⇒ different track had to be

followed
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Sensitivity to timestep (1)

6h cumulated precipitation
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Sensitivity to timestep (2)

• shortening the timestep to Eulerian value significantly reduced the

noise

• such behaviour resembles problem of orographic resonance for SISL

schemes

• however, resonant conditions were not met (wind in concerned

regions was not that strong)
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Sensitivity to orography filtering (1)

model orography
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Sensitivity to orography filtering (2)

spectrum of unfiltered and filtered orography
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Sensitivity to orography filtering (3)

6h cumulated precipitation
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Sensitivity to orography filtering (4)

• orography filtering reduces the noise ⇒ like resonance, problem is

orographically induced

• removal of fine scale orography is not a solution, since we lose scales

we are interested in
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Reproducing the problem in adiabatic model

vertical velocity ω at 700 hPa level
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Sensitivity to diffusion strength (1)

vertical velocity ω at 700 hPa level
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Sensitivity to diffusion strength (2)

• surprisingly, stronger spectral diffusion amplified the noise

• when spectral diffusion was turned off, noise disappeared

• further tests showed that it is too strong diffusion on horizontal

divergence D which causes the problem
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Basic mechanism – explanation in 1D linearized

shallow water equations (1)

∂D′

∂t
+ ū

∂D′

∂x
=−∆φ′ − νD∇4D′

∂φ′

∂t
+ ū

∂φ′

∂x
=−c2D′ + ū

∂φS

∂x

D′(x, t)≡
∂u′(x, t)

∂x

u(x, t)≡ ū + u′(x, t)

φ(x, t)≡ φ̄ + φ′(x, t)

ū + u′

φS

φ′

φ̄ ≡ c2
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Basic mechanism – explanation in 1D linearized

shallow water equations (2)

• two limit cases for stationary response far from resonance (|ū| ≪ c):

νD = 0 νD → +∞

u′ =
ū

c2 − ū2
· φS ≈

ū

c2
· φS

φ′ =−
ū2

c2 − ū2
· φS ≈−

ū2

c2
· φS

D′→ 0
u′→ 0
φ′→ φS

• sufficiently strong νD reverts sign of φ′, eventually increasing its
amplitude by factor c2/ū2 with respect to undiffused solution
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Sensitivity to diffusion strength far from resonance

normalized geopotential amplitude (∆t = 180 s, u = 10 ms−1)
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Sensitivity to diffusion strength near resonance

normalized geopotential amplitude (∆t = 180 s, u = 45 ms−1)
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Inability to explain ∆t dependency far from resonance

normalized geopotential amplitude (4∆x wave, cubic Lagrange int.)
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Horizontal diffusion in ALADIN/CHMI

• ALADIN/CHMI uses so called SLHD scheme, which contains two

diffusions – gridpoint (nonlinear) and spectral (linear)

• gridpoint diffusion employs damping properties of SL interpolators,

its strength being modulated by horizontal flow deformation rate

• spectral diffusion is used for two purposes:

1) 4th order reduced diffusion acts mainly as sponge layer, elimi-

nating spurious reflections from model top caused by unphysical

elastic upper boundary condition

2) 6th order supporting diffusion controls orographic terms evalu-

ated in final points of SL trajectories, which are thus not subject

to gridpoint diffusion

• spectral diffusion on divergence is 5 times stronger than on vorticity

and other fields
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Retuning of spectral diffusion in ALADIN/CHMI (1)

• reduced diffusion on divergence was completely turned off below

100 hPa level and its stregth above this level was weakened 10 times

• order of reduced diffusion was decreased from 4 to 2 (less scale

selectivity of sponge layer improved its absorbing properties)

• supporting diffusion on divergence was weakened 10 times

• strength of spectral diffusion on other fields was equalized with that

on divergence
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Retuning of spectral diffusion in ALADIN/CHMI (2)

relative diffusion strength
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Results with retuned spectral diffusion (1)

6h cumulated precipitation

2010/11/07 00UTCBase
2010/11/07 06UTCValid

@yaga Thu May 12 11:27:50 2011 [../icmsh/2010-11-07_00/ICMSHA000+0006]

2010/11/07 00UTCBase
2010/11/07 06UTCValid

@yaga Thu May 12 13:34:01 2011 [../icmsh/2010-11-07_00/ICMSHA216+0006]

old diffusion tuning new diffusion tuning

21



Results with retuned spectral diffusion (2)

low cloudiness
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Conclusions

• use of numerical diffusion as a noise filter in coupled system of

equations can have surprising consequences

• too strong linear diffusion on horizontal divergence can cause

spurious orographic response due to feedback between momentum

and continuity equations

• satisfactory solution is to weaken (or completely prevent) linear

diffusion on divergence in tropopause, leaving all the work to more

physical nonlinear diffusion

• nonlinear diffusion modulated by horizontal flow deformation rate

is softer thanks to the fact that it does not affect dominant linear

part of orographic response
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