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KENDA :    Why develop 
Ensemble-Based Data Assimilation ?

COSMO-DE:   ∆x = 2.8 km
(deep convection explicit,
shallow convection param.)

domain size :   ~  1250 x 1150 km

convection-permitting NWP:
after ‘few’ hours,
a forecast of convection is a long-term forecast

domain size :   ~  1250 x 1150 km
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a forecast of convection is a long-term forecast
→ deliver probabilistic (pdf) rather than deterministic forecast
→ need ensemble forecast and data assimilation system

→ forecast component: COSMO-DE EPS



KENDA :    Why develop 
Ensemble-Based Data Assimilation ?

→ data assimilation: priority project within COSMO consortium
Km-scale ENsemble-based Data Assimilation (KENDA):

→ Local Ensemble Transform Kalman Filter (LETKF) ,
(because of its relatively low computational costs)

This talk: - method and implementation
- some scientific issues

talk by Hendrik Reich :  preliminary experiments at DWD
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Basic theory :
Ensemble Transform KF (Hunt et al., 2007)
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Assume:  Gaussian errors

for   Pb =  (k – 1) Xb (Xb)T ,   J(x) is well-defined in sub-space S spanned by Xb
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Local  Ensemble Transform Kalman Filter
LETKF  (Hunt et al., 2007)
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flow-dep background error cov.
Pb =  (k – 1) Xb (Xb)T

forecast perturbations X
analysis error 

covariance
(computed only in 
ensemble space)

in the (k-1) -dimensional (!) sub-space S spanned by background perturbations :

set up cost function  J(w) in ensemble space,  
explicit solution for minimisation (Hunt et al., 2007)

wXxx bb +=

perturbed 
analyses
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• implementation following Hunt et al., 2007

• basic idea: do analysis in the space of the ensemble perturbations

– computationally efficient, but also restricts corrections to

LETKF for COSMO :
summary of method

– computationally efficient, but also restricts corrections to
subspace spanned by the ensemble

– explicit localization (doing separate analysis at every grid point, 
select only obs in vicinity)

– analysis ensemble members are locally linear combinations
of first guess ensemble members
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LETKF for COSMO :  
transform matrices

weight matrices (transform matrices) :   determine linear combination

forecast
members
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→ diagonal elements   >>   off-diagonal elements   (→ analysis increments ’small’)
→ ‘good’ forecast members get larger weight in all analysis members

normal values for obs errors R
(for a grid point influenced by

> 200 conventional obs)

R divided by 100
(simulating many more obs)

members



• analysis step (LETKF) outside COSMO code
→ ensemble of independent COSMO runs up to next analysis time

(collecting obs – f.g. → 4D -LETKF)
→ separate analysis step code, LETKF included in 3DVAR package of DWD

LETKF for COSMO :
technical implementation

→ separate analysis step code, LETKF included in 3DVAR package of DWD
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• basically for verification purposes, COSMO obs operators incl. quality control
will be implemented in 3DVAR / LETKF environment
→ future: hybrid 3DVAR-EnKF approaches in principle applicable to COSMO



• lateral BC :    

– future:  from global EnKF / EPS based on
ICON  (non-hydrostatic,

LETKF  (km-scale COSMO) : 
implementation

ICON  (non-hydrostatic,
with regional grid refinement)

– currently:  COSMO-SREPS  (or deterministic)

• standard experimentation system not yet adapted to perform LETKF   (but soon) 
→ stand-alone scripts, only preliminary LETKF experiments up to now
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→ talk by Hendrik Reich 



(forecast / analysis) ensemble spread ‘characterises’ (forecast / analysis) error,  but 

• model error is not accounted for by algorithm

LETKF  (km-scale COSMO) : 
scientific issues / refinement

• ensemble size is limited,  ensemble can only sample but not fully represent errors

• model error is not accounted for by algorithm

→ lack of spread:  (partly) due to model error and limited ensemble size
which is not accounted directly by the algorithm 

→ multiplicative Xb → ρ · Xb (tuning, or adaptive (y – H(x) ~ R + HTPbH))

→ additive :  perturbing the NWP model

to account for it:    covariance inflation,  what is needed ?
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→ additive :  perturbing the NWP model
– fixed perturbations of model physics parameters



fixed perturbations of model physics parameters 
rlam_heat=0.1

ensemble forecast perturbations from COSMO-DE-EPS
here:  a result from an old version without initial perturbations

grandfathers 
for LBC

additive covariance inflation:
model perturbations

ECMWF

GME

rlam_heat=0.1for LBC
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NCEP

UM

temperature at ~10m, +3h (03 UTC)



+3h /  +9h

additive covariance inflation:
model perturbations

T10 m over Northern Germany

ensemble forecast perturbations,
statistics over 9 days 

→ ≤ +3h :  bi-modal pdf
but EnKF optimal 
only for Gaussian pdf 

→ physics perturbations that may be appropriate for the forecast component
of an EPS need not be appropriate for DA (EnKF)

• additive covariance inflation:  perturbing the NWP model
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• additive covariance inflation:  perturbing the NWP model

– fixed perturbations of model physics parameters :  no

– stochastic physics  (will be implemented)

– statistical 3DVAR-B   →→→→ hybrid schemes !

– additive inflation which reflects model error as estimated by statistics
(comparing forecast tendencies with observed tendencies, Gorin & Tsyrulnikov)



• localisation    (multi-scale data assimilation,
successive LETKF steps with different obs / localisation ?)

LETKF  (km-scale COSMO) : 
scientific issues / refinement

• update frequency  ∆at ?        1 hr  ≥ ∆at ≥ 15 min

non-linearity  vs.  noise / lack of spread / 4D property ?

• perturbed lateral BC ,   how to deal with it ? 

( → source of noise )
(distort implicit error covariances in filter   → limit use of obs ?)
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note:  shorter data cut-off  &  higher analysis frequency 
for COSMO-DE than for driving global system ICON

• non-linear aspects,  convection initiation   (outer loop ,  (latent heat nudging) ?)



• radar :   radial velocity and (3-D) reflectivity

LETKF  (km-scale COSMO) : 
current work :   new observation types

• ground-based GPS slant path delay    (direct use in LETKF , or tomography)

• cloud information based on satellite and conventional data

– derive incomplete analysis of cloud top + cloud base, using conventional obs 
(synop, radiosonde, ceilometer) and NWC-SAF cloud products from SEVIRI, 
use obs increments of cloud or cloud top / base height or derived humidity
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– or use SEVIRI radiances directly

(Issues in LETKF:  non-Gaussian distribution of obs increments,   non-linear obs opr,
non-local obs,    obs error correlations / thinning …)



KENDA

thank you for your attentionthank you for your attention
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for   Pb =  (k – 1) Xb (Xb)T ,   J(x) is well-defined in sub-space S spanned by Xb

Basic theory :
Ensemble Transform KF (Hunt et al., 2007)
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w k 1 I• if  w is Gaussian random vector with mean 0 and covariance (k – 1) I ,
then                             is Gaussian with mean        and cov.  (k – 1) Xb (Xb)TbxwXxx bb +=

( ) [ ] [ ])()(1)( 1 wXxyRwXxywww OO bbTbbT HHkJ +−+−+−= −

→ set up cost function in  (low-dimensional !)  ensemble space 

→ apply nonlinear H to all forecast members 
and linearize around ensemble mean in observation space 

→ normal KF eq. in low-dim ensemble space,  solve explicitly

( ))(ibH x
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• need analysis ensemble members, with ensemble spread  (k – 1) Xa (Xa)T = Pa ,

choose: 

→ normal KF eq. in low-dim ensemble space,  solve explicitly

→ analysis error  cov. 

and analysis mean ( ) [ ]bTba
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