Convection Initiation Nowcasting and Verification

Dennis Stich¹, Caroline Forster¹, Tobias Zinner², and Arnold Tafferner¹

9th International SRNWP-Workshop on Non-Hydrostatic Modelling, Bad Orb, 16 - 18 May 2011

> 1 DLR Institute of Atmospheric Physics, Oberpfaffenhofen, Germany 2 Meteorological Institute, LMU Munich, Germany

Outline

Motivation

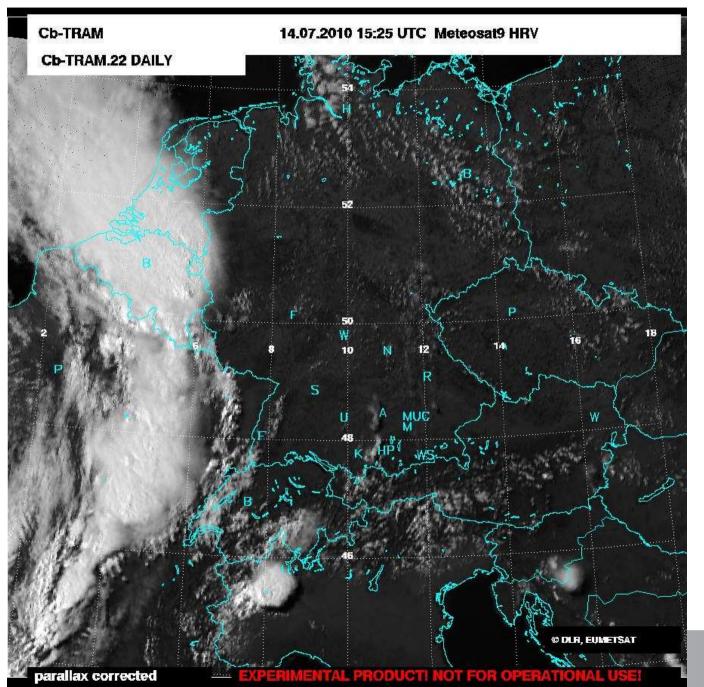
Cb-TRAM (Cumulonimbus TRacking And Monitoring)

CI-Verification

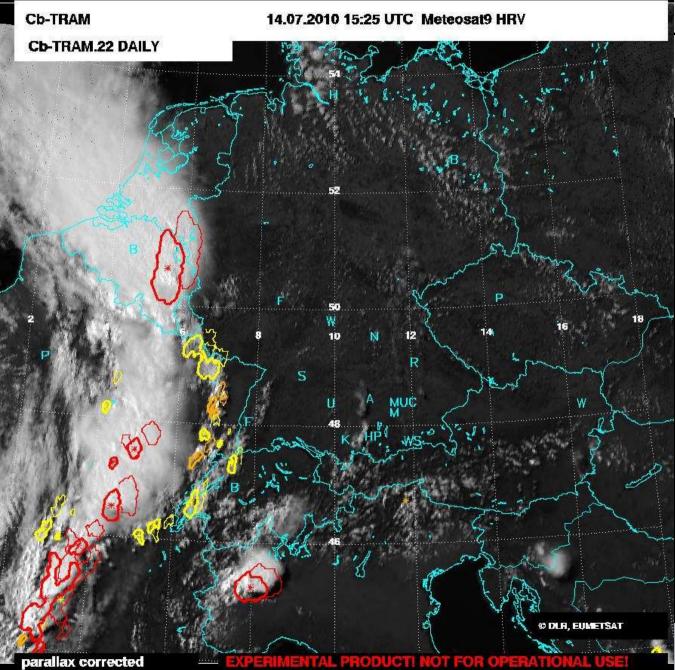
Additional data sources

Summary

Motivation

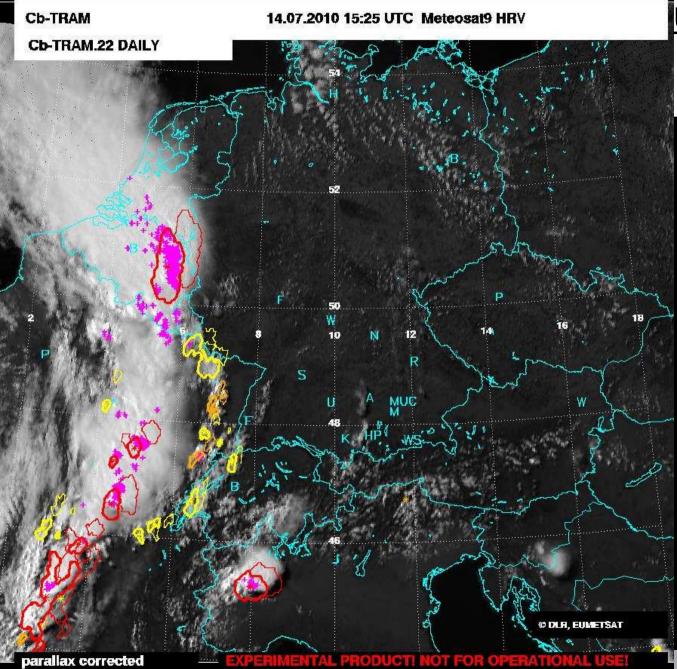

Aviation purposes

Cb-TRAM as basic tool


Adding non-satellite fields for further development

Cb-TRAM - Cumulonimbus **TR**acking **A**nd **M**onitoring

Cb-TRAM - Cumulonimbus **TR**acking **A**nd **M**onitoring



		Ŭ			
Used MS	<u>G (rap</u>	<u>pidscan) data:</u>			
WV 6.2		IR 10.8			
IR 12.0		HRV			
Detection	n stag	es:			
1: Conve	ction	Initiation (CI)			
develop					
IR 10.8					
2: Rapid development					
WV 6.2 rapid cooling					
(> 1K/15min)					
3: Mature storms					
T 6.2 - T 10.8					
HRV tex	ture				
Extrapolat	tion up	o to 60 min			
(here 30 minute nowcast plotted)					

Description: Zinner et al., 2008

9th International SRNWP-Workshop Bad Orb > Dennis Stich > 17 May 2011

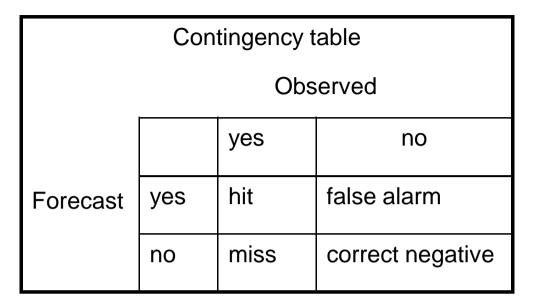
Cb-TRAM - Cumulonimbus TRacking And Monitoring

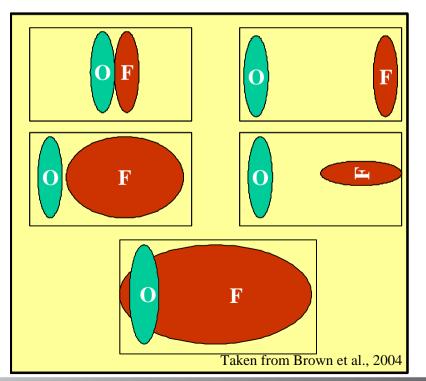
		•		
Used MS	<u>G (rap</u>	<u>pidscan) data:</u>		
WV 6.2		IR 10.8		
IR 12.0		HRV		
Detection	n stag	es:		
1: Conve	ction	Initiation (CI)		
develop	ment i	n HRV		
IR 10.8	coolin	g		
2: Rapid	devel	opment		
WV 6.2 rapid cooling				
(> 1K/15min)				
3: Mature storms				
T 6.2 - T 10.8				
HRV texture				
Lightning	I (LIN	ET)		
Extrapolation up to 60 min				

Extrapolation up to 60 min (here 30 minute nowcast plotted)

P-Workshop Bad Orb > Dennis Stich > 17 May 2011

Description: Zinner et al., 2008


How to verifiy CI?


Cutting edge of forecast verification!

Difficult to match CI satellite indicators to lateron (30 – 60 min) existing storms, detected in radar, lightning or satellite data

Thunderstorms are relatively rare events!

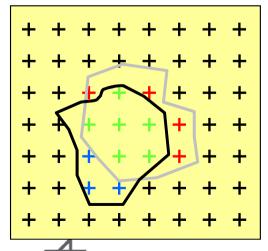
How to deal with close nowcasts? What is close?

How is a "CI-event" defined? Or: What's used as "truth"?

- radar echo \geq 35 dBZ
 - (e.g. Roberts & Rutledge, 2003; Mecikalski & Bedka, 2006)
- Lightning density / flash rate (e.g. Zinner & Betz, 2009; Donovan et al., 2008)
- Cb-TRAM "mature storm"-stage determined by IR 6.2 – IR 10.8 and HRV texture

How is a "CI-event" defined? Or: What's used as "truth"?

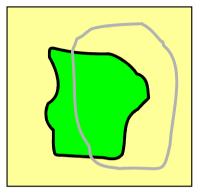
• radar echo \geq 35 dBZ

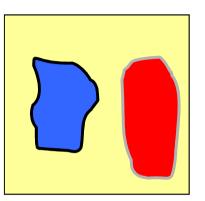

(e.g. Roberts & Rutledge, 2003; Mecikalski & Bedka, 2006)

Cb-TRAM analysis used for comparison with the 15, 30, 45, and 60 minutes CI-stage nowcasts

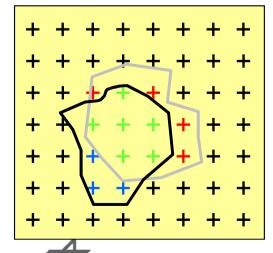
 Cb-TRAM "mature storm"-stage determined by IR 6.2 – IR 10.8 and HRV texture

Contingency table Observed			
		yes	no
Forecast	yes	hit	false alarm
	no	miss	correct negative




Pixel based

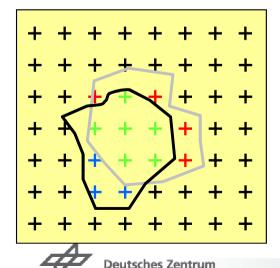
Requires perfect matching!


Contingency table Observed			
		yes	no
Forecast	yes	hit	false alarm
	no	miss	correct negative

Object based

double penalty problem

Deutsches Zentrum für Luft- und Raumfahrt e.V.


in der Helmholtz-Gemeinschaft

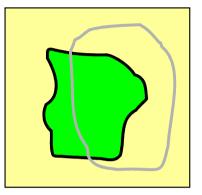
DLR

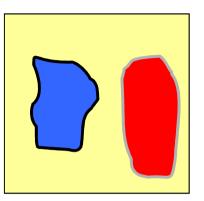
Pixel based

Requires perfect matching!

Contingency table Observed			
		yes	no
Forecast	yes	hit	false alarm
	no	miss	correct negative

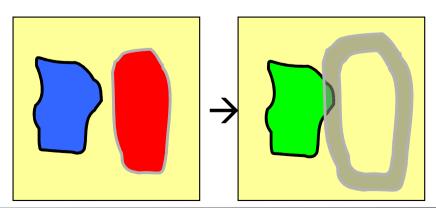
DLR

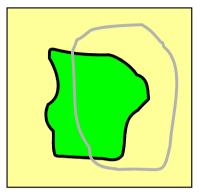

für Luft- und Raumfahrt e.V.

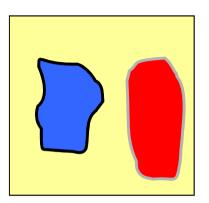

in der Helmholtz-Gemeinschaft

Pixel based

Requires perfect matching!


Object based


double penalty problem


Fuzzy + Object based

Contingency table Observed			
		yes	no
Forecast	yes	hit	false alarm
	no	miss	correct negative

Object based

Different versions shown:

Object based with Cb stage 1 analysis objects for the nowcast overlap

Developing Object based without Cb stage 1 analysis objects for the nowcast overlap \rightarrow just developing cells Results for the summer 2009, 15 May to 31 August

	15 min	30 min	acc 15-60 min	
Object based POD	0,5919	0,4212	0,4093	
Object based FAR	0,6109	0,7545	0,5448	
Object based CSI	0,2737	0,1462	0,2489	
Dev Object POD	0,2281	0,1992	0,1697	
Dev Object FAR	0,8853	0,8841	0,8176	
Dev Object CSI	0,0397	0,0393	0,0654	
FAR = false alarms / (hits + false alarms)				

CSI = hits / (hits + misses + false alarms)

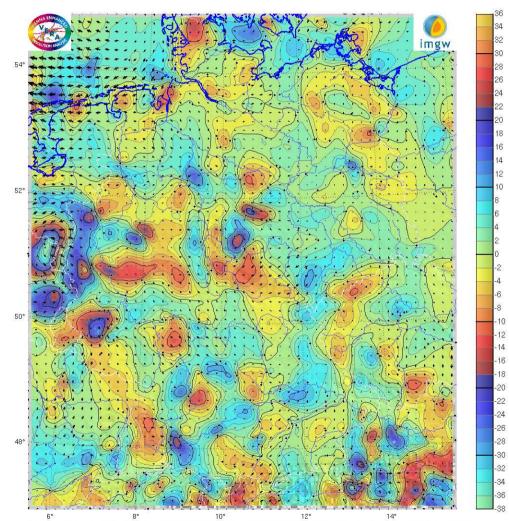
POD = hits / (hits + misses)

Additional data sources

Testing the additional information provided by:

- more satellite channels
- VERA data (e.g. MFC/MFD, equivalent potential temperature)
- •
- •

12 14


18 20 -22 -24

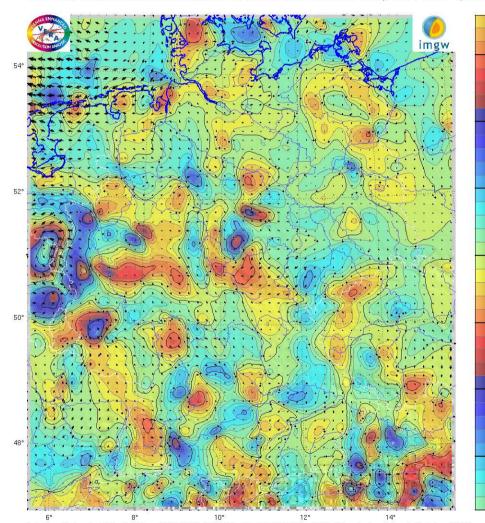
-30

-36 -38

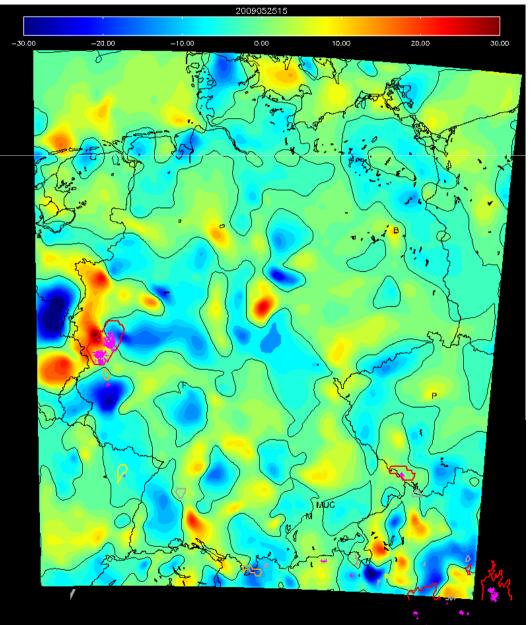
Montag, 25. Mai 2009, 15:00 UTC, Deutschland

Feuchteflussdivergenz (Farbflächen), Einheit: 10⁻⁴ g/(kg s) [2], Beobachtungen: 326, Symbol: *, Min: -37.75, Max: 34.41, μ: 0.67, σ²: 32.38 10 m Wind (Pfeile), Einheit: m/s, Beobachtungen: 345, Symbol: ο, Min: 0.03, Max: 11.57, μ: 2.39, σ²: 2.53+ (10 m/s)

Erstellt am Montag, den 04. April 2011 um 09:42:24 UTC mit VERAflex 1.7. © 1995-2011 Institut für Meteorologie und Geophysik, Universität Wien



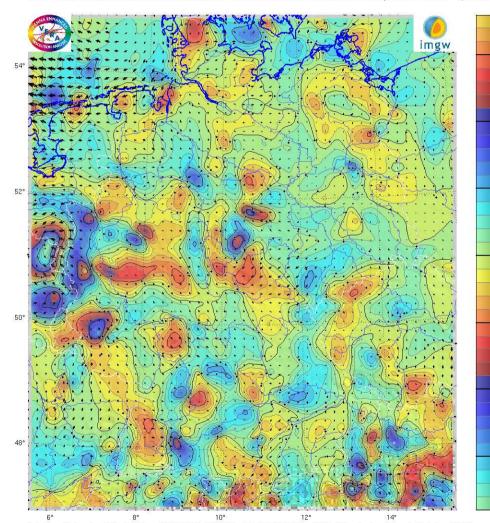
More information and references:


http://www.univie.ac.at/amk/vera/

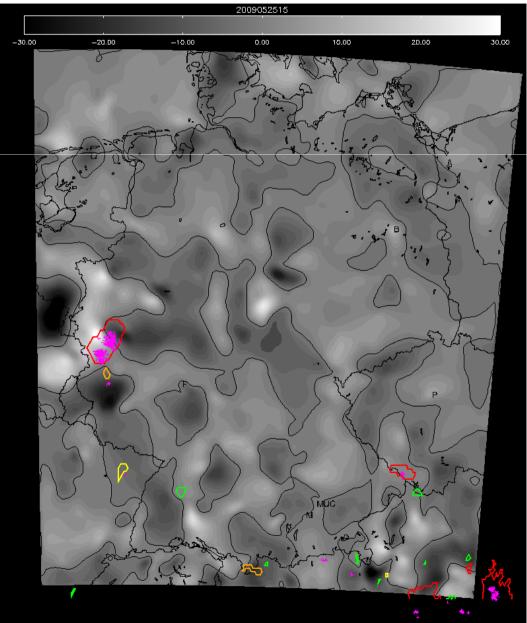
Montag, 25. Mai 2009, 15:00 UTC, Deutschland

Feuchteflussdivergenz (Farbflächen), Einheit: 10^{-4} g/(kg s) [2], Beobachtungen: 326, Symbol: *, Min: -37.75, Max: 34.41, μ : 0. 10 m Wind (Pfeile), Einheit: m/s, Beobachtungen: 345, Symbol: o, Min: 0.03, Max: 11.57, μ : 2.39, σ^2 : 2.53 \Rightarrow (10 m/s)

Erstellt am Montag, den 04. April 2011 um 09:42:24 UTC mit VERAflex 1.7. © 1995-2011 Institut für Meteorologie und Geophysik, Universität Wien


MFD May 25 2009 15 UTC

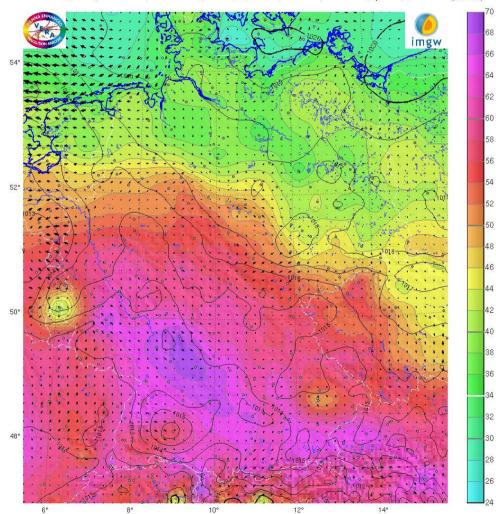
26


-10 -12 -14 -16 -20 -22 -24 -26 -28 -30 -32 -34 -36

Montag, 25. Mai 2009, 15:00 UTC, Deutschland

Feuchteflussdivergenz (Farbflächen), Einheit: 10^{-4} g/(kg s) [2], Beobachtungen: 326, Symbol: *, Min: -37.75, Max: 34.41, μ : 0 10 m Wind (Pfeile), Einheit: m/s, Beobachtungen: 345, Symbol: o, Min: 0.03, Max: 11.57, μ : 2.39, σ^2 : 2.53 \Rightarrow (10 m/s)

Erstellt am Montag, den 04. April 2011 um 09:42:24 UTC mit VERAflex 1.7. 🐵 1995-2011 Institut für Meteorologie und Geophysik, Universität Wien

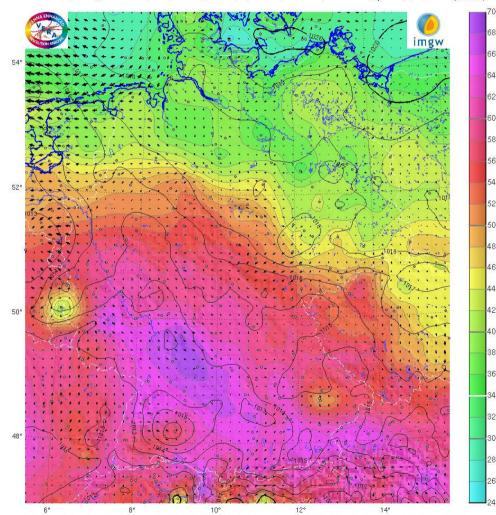

MFD May 25 2009 15 UTC

26

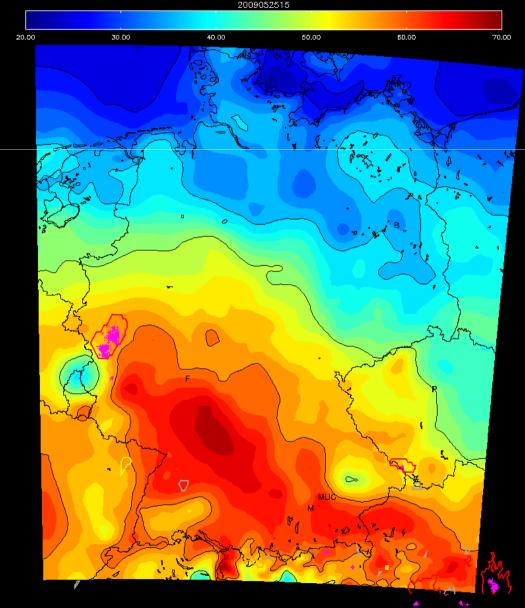
-10 -12 -14 -16 -20 -22 -24 -26 -28 -30 -32 -34 -36

Montag, 25. Mai 2009, 15:00 UTC, Deutschland

Äquivalentpotentielle Temperatur (Farbflächen), Einheit: °C [2], Beobachtungen: 338, Symbol: Diamant, Min: 25.81, Max: 69.46, μ : 49.34, σ^2 : 124.65 Reduzierter Bodendruck (Isolinien), Einheit: hPa [1], Beobachtungen: 311, Symbol: +, Min: 1009.09, Max: 1020.75, μ : 1015.87, σ^2 : 5.84 10 m Wind (Pfeile), Einheit: m/s, Beobachtungen: 345, Symbol: o, Min: 0.03, Max: 11.57, μ : 2.39, σ^2 : 2.53 \rightarrow (10 m/s)

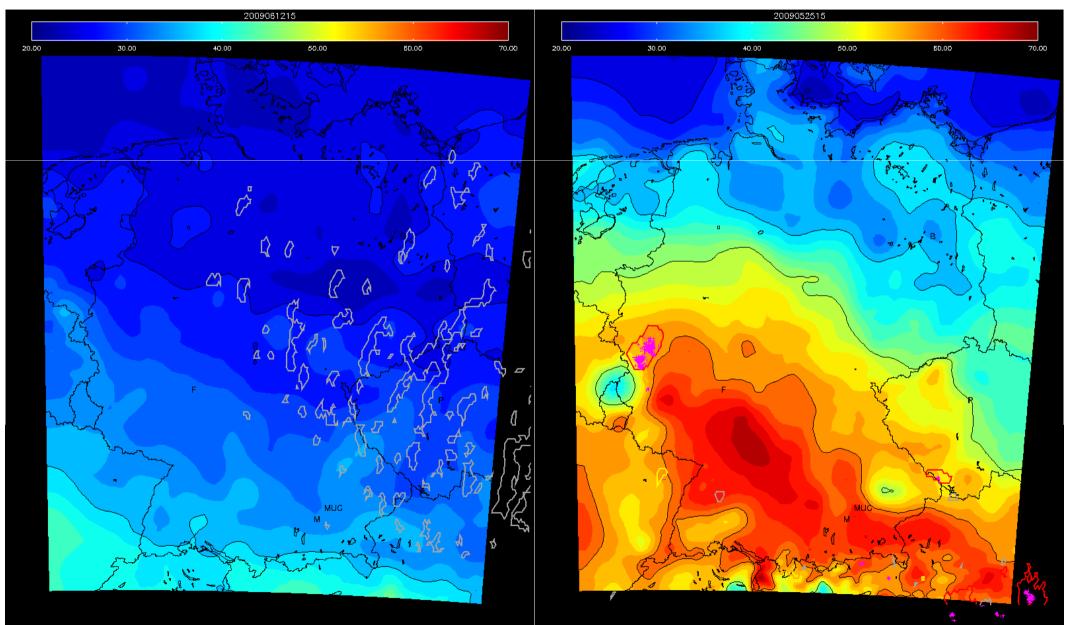


Erstellt am Montag, den 04. April 2011 um 09:42:35 UTC mit VERAflex 1.7. @ 1995-2011 Institut für Meteorologie und Geophysik, Universität Wien



Montag, 25. Mai 2009, 15:00 UTC, Deutschland

Äquivalentpotentielle Temperatur (Farbflächen), Einheit: °C [2], Beobachtungen: 338, Symbol: Diamant, Min: 25.81, Max: 69.4 Reduzierter Bodendruck (Isolinien), Einheit: hPa [1], Beobachtungen: 311, Symbol: +, Min: 1009.09, Max: 1020.75, μ: 1015.87, 10 m Wind (Pfeile), Einheit: m/s, Beobachtungen: 345, Symbol: ο, Min: 0.03, Max: 11.57, μ: 2.39, σ²: 2.53 → (10 m/s)



Erstellt am Montag, den 04. April 2011 um 09:42:35 UTC mit VERAflex 1.7. @ 1995-2011 Institut für Meteorologie und Geophysik, Universität Wien

EPOT May 25 2009 15 UTC

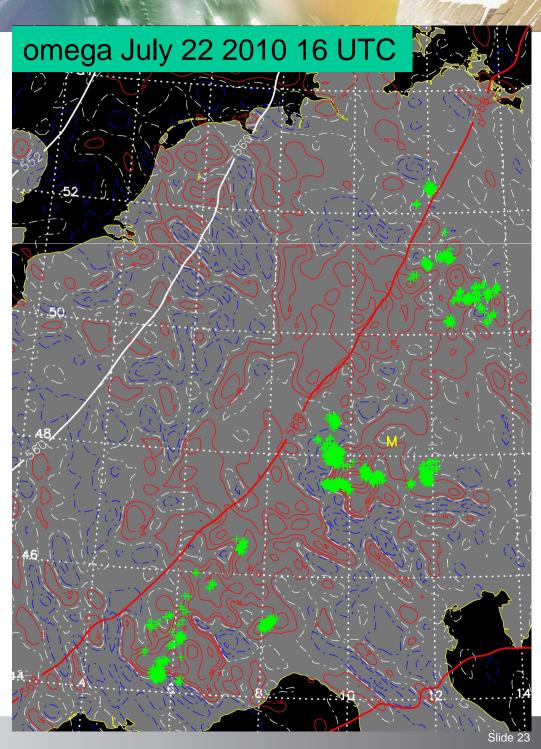
EPOT June 12 2009 15 UTC

EPOT May 25 2009 15 UTC

Additional data sources

Testing the additional information provided by:

- more satellite channels
- VERA data (e.g. MFC/MFD, equivalent potential temperature)
- COSMO-EU data (e.g. updraft, an instability measure)
- COSMO-DE data (e.g. thunderstorm probability)


COSMO-EU

Updrafts in vertical velocity of COSMO-EU and LINET lightning detections often correlated (Figure courtesy of M. Köhler, DLR)

Correlation between COSMO-EU updrafts and favoured thunderstorm areas already before lightning initiation?

 \rightarrow ongoing work!

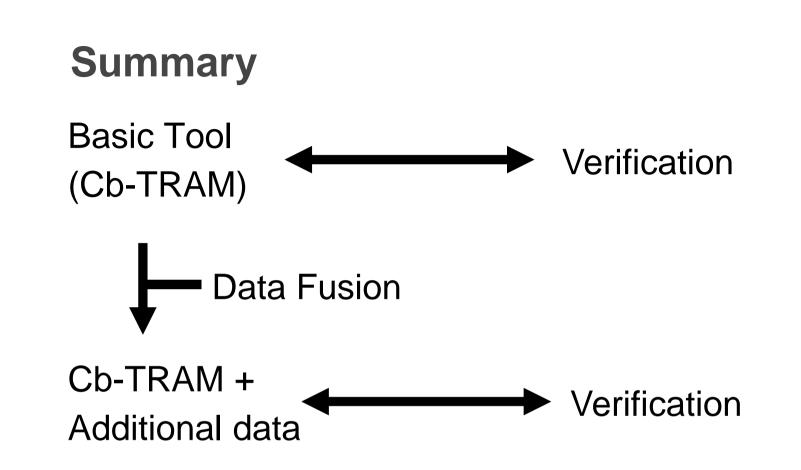
Additional data sources

Testing the additional information provided by:

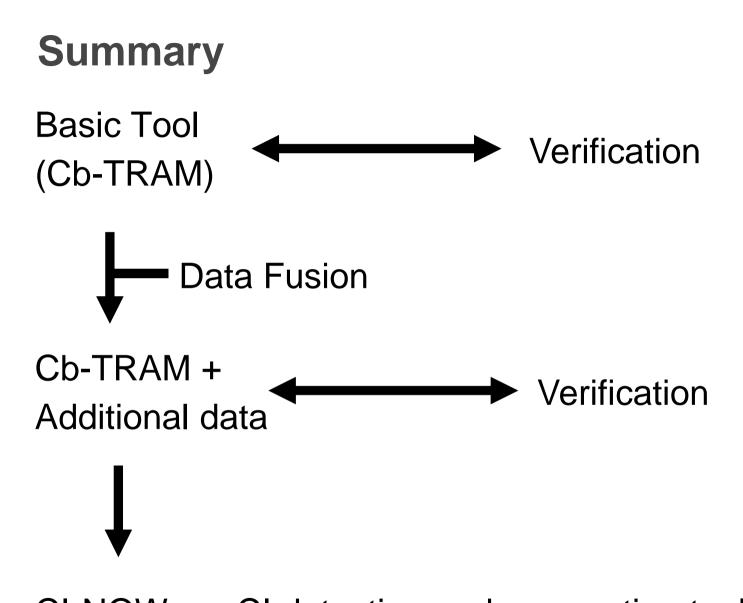
- more satellite channels
- VERA data (e.g. MFC, equivalent potential temperature)
- COSMO-EU data (e.g. updraft, an instability measure)
- COSMO-DE data (e.g. thunderstorm probability)

Data fusion (e.g. fuzzy logic)

Verify the abilities for the different products and their fusion



Summary Basic Tool (Cb-TRAM) Verification



Summary Basic Tool (Cb-TRAM) Verification

CI-NOW – a CI detection and nowcasting tool

Thank you for your attention! Questions?

contact: dennis.stich@dlr.de

References

- Brown, B.G., R.R. Bullock, C.A. David, J.H. Gotway, M.B. Chapman, A. Takacs, E. Gilleland, K. Manning, J. Mahoney (2004): New verification approaches for convective weather forecasts. *11th Conf. Aviation, Range, and Aerospace Meteorology*, 4-8 Oct 2004, Hyannis, MA.
- Donovan, M.F., E. R. Williams, C. Kessinger, G. Blackburn, P.H. Herzegh, R.L. Bankert, S. Miller, F.R. Mosher (2008): The Identification and Verification of Hazardous Convective Cells over Oceans Using Visible and Infrared Satellite Observations. *J. Appl. Meteor. Climatol.*, **47**: 164–184.
- Mecikalski, J. and Bedka, K. (2006). Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. *Monthly Weather Review*, **134**: 4978.
- Roberts, R. D. and Rutledge, S. (2003). Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. *Weather and Forecasting*, **18**: 562584.
- Zinner, T. and Betz, H. (2009). Validation of Meteosat storm detection and nowcasting based on lightning network data. *Proceedings EUMETSAT 2009*, Bath
- Zinner, T., Mannstein, H., and Tafferner, A. (2008). Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. *Meteorology and Atmospheric Physics*, **101**: 191210.

Objective high resolution analysis of meteorological fields based on surface observations

Thin plate smoothing spline interpolation of surface synop station observations on a 2 D grid

Additional information via so called "fingerprints" (a priori knowledge for areas with complex terrain or sparse data)

Quality control of the data

Output: e.g. u- & v-component of wind, potential temperature, equivalent potential temperature, pressure reduced to MSL, 6hourly accumulated precipitation, moisture flux convergence

More information and references on http://www.univie.ac.at/amk/vera/

