www.ufa.cas.cz

Department of Meteorology

Institute of Atmospheric Physics ASCR

Comparison of convective precipitation forecasts using one and two moment microphysical parameterization

P. Zacharov, Z. Sokol, D. Řezáčova, Institute of Atmospheric Physics ASCR Czech Republic

Outline

- Configuration of the COSMO model
- Radar data
- Assimilation method
- 1-moment and 2-moment microphysics
- Verification and comparison of forecasts
- Conclusions

NWP model COSMO-CZ

- COSMO 4.11
- IC + LBC COSMO-EU (7km)
- $\Delta x = 2.8 \text{ km}, \Delta t = 30 \text{ s}$
- 50 vertical layers
- 281 x 211 g.b.
- -- verification domain

• parametrization of convection is switched off

Radar data

- CZRAD
- Radar Brdy and Skalky
- resolution 1km x 1km
- $\Delta t = 10$ min.
- CAPPI 2km

• MERGE adjustation method (radar+gauges) developed by CHMI

Radar data assimilation

- Correction of water vapor mixing ratio
- The assimilation of radar data
- $r_{RADAR} > r_{NWP} \implies \Delta q_V > 0$ $r_{RADAR} < r_{NWP} \implies \Delta q_V < 0$

Radar data assimilation

- The assimilation of extrapolated data
- Extrapolation by COTREC for 1 hour

 $r_{RADAR} > r_{NWP} \implies \Delta q_V > 0$ $r_{RADAR} < r_{NWP} \implies \Delta q_V = 0$

model starts at 9UTC (cca 12UTC)

Set-up

Comparison:

- 1-moment microphysics parametrization two assimilation settings

 A) without extrapolated data assimilation ROBS
 B) with extrapolated data assimilation REXT
- 2-moment microphysics parametrization
 - only extrapolated data assimilation
 - two CCN settings (Noppel H. et al)
 - A) itype_gscp = 2463 high CCN ,maritime' **REXT63**
 - B) itype_gscp = 2483 low CCN ,continental' **REXT83**

CCN:

- Cloud condensation nuclei number
- Explicit description of droplets nucleation

Noppel H. et al, 2010: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme. *Atmos. Res.*, **96**, 286-301.

Verification:

- 1h precipitation totals ("free" forecast)
- Verification methods:
 - Fraction skill score (Roberts and Lean, 2008)
 - SAL (Wernli et al, 2008)

Fraction skill score

FSS – "fuzzy" or "neighbourhood" verification method

- comparison of fractional coverage of an elementary area by precipitation over given threshold
- (Roberts and Lean, 2008)
- Perfect QPF is characterized by FSS = 1 (for smallest EA)

POD = 0.00 , FAR = 1.00, FSS(5*5) = 1.00

Roberts NM, Lean HW, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. *Mon. Wea. Rev.*, **136**, 78–97.

SAL

SAL – object based verification measure

S (Structure) : [-2, 2] – x-axis

2 large and/or flat model precip. area
-2 small and/or peaked model precip. area
A (Amplitude) :

[-2, 2] – y-axis

2 overestimation

-2 underestimation

L (Localization) : localization of centers of mass

[0, 2] – color : 0 center of mass well matched, 2 wrong localization **Cross:** mean(S), mean(A) and color= mean(L)

• Perfect QPF is characterized by zeros in all components.

Wenli H, Paulat M, Hagen M, Frei C, 2009: SAL—A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts. *Mon. Wea. Rev.*, **136**, 4470–4487.

FSS Th= 0.5 mm/h; mean, std

FSS Th= 10 mm/h; mean, std

SAL Th= 0.5 mm/h

SAL Th= 10 mm/h

REXT63

RADAR

16:00

r

REXT63 .

REXT

Summary

- The assimilation of extrapolated radar data improves precipitation forecasts in most cases.
- 2-m microphysics improves the forecast as well especially for higher rain rates.
- More tests with 2-m microphysics and more detailed analysis.

www.ufa.cas.cz

Department of Meteorology

Institute of Atmospheric Physics ASCR

Thank you for your attention!

