

Bulk convergence of kilometer-scale simulations of moist convection over complex terrain

Wolfgang Langhans, Jürg Schmidli, Christoph Schär

Institute for Atmospheric and Climate Science, ETH Zurich

May 17, 2011

Convergence

Numerical convergence

- Limiting (∆x → 0) behavior of discretization scheme
- Equivalently provided by consistency and stability (Lax and

Richtmyer 1956)

 Consistency: In this limit numerical scheme provides solution to the continuous problem

Convergence

Numerical convergence

- Limiting ($\Delta x \rightarrow 0$) behavior of discretization scheme
- Equivalently provided by consistency and stability (Lax and

Richtmyer 1956)

Consistency: In this limit numerical scheme provides solution to the continuous problem

Convergence

Physical convergence

- Insensitivity to grid-spacing and modified physics
- Convergence as a result of Reynolds-number similarity

Cloud-resolving modeling

- Horizontal grid-spacing of 1/4 SCL suggested (Petch et al. 2002)
- Lack of convergence found for idealized LES of organized convection (Bryan et al. 2003)
- Subgrid-mixing closures not primarily designed for O(1 km)

(Wyngaard 2004)

Objectives

- Interest: Numerical and physical convergence of real kilometer-scale simulations
- Process: Locally triggered deep orographic convection
- Parameter: Regional-scale/bulk properties
- Issue: Turbulence closure at kilometer-scales

Indicator 1: Heat budget of volume

Indicator 2: Deep-convective fluxes

Methods

Simulation period

- 9-day simulation period
- Weak synoptic-scale forcing
- ECMWF 6-hourly LBC and IC for 0000 UTC 11 July

Nonhydrostatic COSMO model

Dynamics:

- split-explicit RK-3 scheme (Wicker and Skamarock 2002)
- 5th-order advection,
 2nd-order Bott q_x advection

Grid:

Δx (km)		4.4	2.2	1.1	0.55
•	Δt (s)	30	15	8	4
	N (10 ⁶)	3	10	41	166

• Topography: Constant cut-off at $\lambda_c \simeq 20 \text{ km}$

Physics:

- No convection scheme
- One-moment microphysics incl. graupel
- Mixing (1): 1D TKE-based (mesoscale)

$$K_V = S I (2\overline{e})^{1/2}$$

 $K_h = (c_s \Delta x)^2 (0.25(D_{11} - D_{22})^2 + D_{12}^2)^{1/2}$

• Mixing (2): Smagorinsky-Lilly (LES) $K_{h,v} = l^2 (|D|^2 (1 - \frac{Ri}{Ri_{cr}}))^{1/2}$ $I = c_s (\Delta x \Delta y \Delta z)^{1/3}$ (COSMO-LES tested for CBL/NBL)

Nonhydrostatic **COSMO** model

Dynamics:

- split-explicit RK-3 scheme (Wicker and Skamarock 2002)
- 5th-order advection, 2nd-order Bott q_x advection

Grid:

Δx (km)		4.4	2.2	1.1	0.55
	Δt (s)	30	15	8	4
\overline{N}	(10^6)	3	10	41	166

Topography: Constant cut-off at $\lambda_c \simeq$ 20 km

Simulation overview

Turbulent length scales

Mixing(1) $I_h \sim \Delta x$

Mixing(1) $I_h = const$

Mixing(2) $I_{h,v} \sim \Delta x^{2/3}$

used with Mixing(1)

Realization of deep convection

NSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE ETH ZURICH

Alpine Heat Budget

Volume-averaged density-weighted budget (Schmidli and Rotunno 2010)

$$\underbrace{\frac{1}{M}\int\limits_{V}\rho\frac{\partial\theta}{\partial t}dV}_{A} \quad = \quad -\underbrace{\frac{1}{M}\int\limits_{V}\rho\mathbf{v}\cdot\nabla\theta dV}_{B} + \underbrace{\frac{1}{M}\int\limits_{V}-\frac{1}{c_{p}}(\nabla\cdot\mathbf{R})dV}_{C} + \underbrace{\frac{1}{M}\int\limits_{V}-\frac{1}{c_{p}}(\nabla\cdot\mathbf{H})dV}_{D} + \underbrace{\frac{1}{M}\int\limits_{V}\rho L_{v,f}dV}_{E}$$

Convergence of a consistent set

Volume-integrated tendencies

All tendencies **CON 4.4**

24

Volume-integrated tendencies

Net tendencies CON 4.4 2.2 1.1 0.55

Volume-integrated tendencies

Advective and net tendencies CON 4.4 2.2 1.1 0.55

Total deep convective flux (z=6 km)

CON 4.4 2.2 1.1 0.55

Numerical convergence (CON)

RMSE of mean diurnal cycle

Effects of viscosity

| AC **311|** INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE ETH ZURICH

Effects of viscosity

Advective and net moisture tendencies 4.4 2.2 1.1 0.55

| AC **311|** INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE ETH ZURICH

Effects of viscosity

Diabatic tendencies 4.4 2.2 1.1 0.55

Total deep convective flux

Surface precipitation

Relative difference

Relative difference

- Convergence of bulk properties in real-case simulations (4.4, 2.2, 1.1, 0.55 km) has been analyzed
- Numerical convergence of bulk deep convective heat/moisture fluxes is of ~2nd order
- Volume (PBL) integrated heating/moistening converges at a slower rate
- Physical convergence of deep convection is found independently of the applied turbulence closures (~ 10 %)
- LES closure results in larger grid-sensitivity of the PBL to FA exchange
- Still, the link between net bulk PBL heating/moistening and grid-spacing appears weak (balance)

- Convergence of bulk properties in real-case simulations (4.4, 2.2, 1.1, 0.55 km) has been analyzed
- Numerical convergence of bulk deep convective heat/moisture fluxes is of ~2nd order
- Volume (PBL) integrated heating/moistening converges at a slower rate
- Physical convergence of deep convection is found independently of the applied turbulence closures (~ 10 %)
- LES closure results in larger grid-sensitivity of the PBL to FA exchange
- Still, the link between net bulk PBL heating/moistening and grid-spacing appears weak (balance)

- Convergence of bulk properties in real-case simulations (4.4, 2.2, 1.1, 0.55 km) has been analyzed
- Numerical convergence of bulk deep convective heat/moisture fluxes is of ~2nd order
- Volume (PBL) integrated heating/moistening converges at a slower rate
- Physical convergence of deep convection is found independently of the applied turbulence closures (~ 10 %)
- LES closure results in larger grid-sensitivity of the PBL to FA exchange
- Still, the link between net bulk PBL heating/moistening and grid-spacing appears weak (balance)

DSPHERIC AND CLIMATE SCIENCE ETH ZURICH

- Convergence of bulk properties in real-case simulations (4.4, 2.2, 1.1, 0.55 km) has been analyzed
- Numerical convergence of bulk deep convective heat/moisture fluxes is of ~2nd order
- Volume (PBL) integrated heating/moistening converges at a slower rate
- Physical convergence of deep convection is found independently of the applied turbulence closures (~ 10 %)
- LES closure results in larger grid-sensitivity of the PBL to FA exchange
- Still, the link between net bulk PBL heating/moistening and grid-spacing appears weak (balance)

- Convergence of bulk properties in real-case simulations (4.4, 2.2, 1.1, 0.55 km) has been analyzed
- Numerical convergence of bulk deep convective heat/moisture fluxes is of ~2nd order
- Volume (PBL) integrated heating/moistening converges at a slower rate
- ullet Physical convergence of deep convection is found independently of the applied turbulence closures (\sim 10 %)
- LES closure results in larger grid-sensitivity of the PBL to FA exchange
- Still, the link between net bulk PBL heating/moistening and grid-spacing appears weak (balance)

DSPHERIC AND CLIMATE SCIENCE ETH ZURICH

- Convergence of bulk properties in real-case simulations (4.4, 2.2, 1.1, 0.55 km) has been analyzed
- Numerical convergence of bulk deep convective heat/moisture fluxes is of \sim 2nd order
- Volume (PBL) integrated heating/moistening converges at a slower rate
- Physical convergence of deep convection is found independently of the applied turbulence closures ($\sim 10 \%$)
- LES closure results in larger grid-sensitivity of the PBL to FA exchange
- Still, the link between net bulk PBL heating/moistening and grid-spacing appears weak (balance)

Thanks for your attention!

IAC**ETH**

SGS vapor transport through volume top 4.4 2.2 1.1 0.55

Total vapor transport through volume top 4.4 2.2 1.1 0.55

