COSMO simulations of air-sea-ocean interaction processes and impacts on polynya formation and sea ice production

Günther Heinemann, David Schröder, Lars Ebner, Martin Bauer, Susanne Adams, Sascha Willmes University Trier, Germany

Universität Trier

SPONSORED BY THE

Federal Ministry of Education and Research

Sea ice extent: observations

Time series of the percent difference in ice extent in March (ice extent maximum) and September (ice extent minimum) relative to the mean values for the period 1979–2000 (rate of decrease: March –2.7% and September–11.6% per decade). (NSIDC 2010)

Arctic A1B scenario, 13 AR4 climate models (Stroeve et al., 2007)

Estimation of sea ice production in the Laptev Sea with a regional ocean/sea ice model

Mean ice thickness, ice production (km³/a) and annual STDV

Kohnemann (2010)

Region of interest

Polynya frequency

PSSM (AMSR-E) Nov-Apr 2002-2008

Willmes et al. (2011)

- Q_0 : net radiation
- H₀: sensible heat flux
- E₀: latent heat flux
- B₀: soil heat flux (ice production)

Sea ice coverage 28 April 2008

Sea ice coverage 30 April 2008

hiTH contour lines 0.05m (white), 0.2m (blue), 0.5m (red)

ice thickness class (cm)

Atmospheric modelling: COSMO

Model domains COSMO-15km: 3000km COSMO-5km: 1000km

Forcing GME ERA-Interim

Forecast mode +30h, 6h spin-up

Schröder et al. (2011)

- \rightarrow thermodynamic two-layer sea-ice model
- \rightarrow dynamic-thermodynamic sea-ice-ocean model FESOM (AWI)

AWS measurements

© Helbig (2008)

Verification using AWS: temperature

Ice production in polynyas

$$Q_0 - H_0 - E_0 = B_0$$

potential ice production:

$$\frac{\partial h_i}{\partial t} = \frac{B_0}{\rho_i L_i}$$

ice production and thin ice thickness from MODIS satellite data: energy balance method

 T_0 satellite measurements: longwave emission, q_0

Atmospheric forcing data (NCEP, COSMO,...)

Parameterizations: turbulent fluxes from bulk ansatz, incoming longwave radiation

Thin ice thickness (<20cm) from satellite data

$$B_0 = \rho_i c_{pi} k_i \frac{\partial T_i}{\partial z} \bigg|_0 = \rho_i c_{pi} k_i \frac{T_0 - T_{bot}}{h_i}$$
$$h_i = \rho_i c_{pi} k_i \frac{T_0 - T_{bot}}{Q_0 - H_0 - E_0}$$

Ice production in polynyas

$$Q_0 - H_0 - E_0 = B_0$$

potential ice production:

$$\frac{\partial h_i}{\partial t} = \frac{B_0}{\rho_i L_i}$$

ice production from microwave (AMSR, SSM/I) satellite data

prescribed thin ice thickness distribution (climatology from MODIS, open water)

Ice production in Laptev polynyas COSMO-5km runs winter 2008/09

COSMO Ice-free polynyas: 123 km³ 10cm thin ice: 73 km³

Satellite-based: 64 km³

Ice production in Laptev polynyas

Ice production in Laptev polynyas

Ice production classes 2007/08 (Nov-Apr)

Ice production: satellite-based

Black arrows: significant deviation from the long-term average

Ocean-ice modelling: FESOM

sea-ice-ocean model FESOM (AWI, Timmermann et al. 2009):

- hydrostatic primitive-equation ocean model, dynamicthermodynamic sea ice model

- finite element model, grid points identical to COSMO grid points (5km)
- 30 day runs with 5 days spin-up
- atmospheric forcing from COSMO
- intermittent assimilation of MODIS thin ice thickness

Polynya event Jan. 2009

Net annual ice volume production

Laptev Sea:

NAOSIM, Kohnemann (2010): 780 km³

Dmitrenko et al. (2009): 1000 ±500 km³ (1960–1990)

 \rightarrow 25-30% of annual ice export trough Fram Strait (3000 km³)

Laptev polynyas:

Dethleff et al. (1998): 258 km³ (only 1990/91)

satellite-based study Willmes et al. (2011): 55 ±15 km³

COSMO study: Ice-free 50/123 km³, 10cm thin ice 30/73 km³ for 2008/2009

Annual ice area production Laptev Sea

Alexandrov et al. (2000): 480,000 km² (1987–1995)

Accumulated daily polynya area per winter

Willmes et al. (2011): 1,100,000 km² (1979–2008)

MODIS sea ice concentration 17 March 2011

Conclusions

- polynyas are an important ice factory for the Arctic/Antarctic
- polynya formation is wind-driven and occurs during the whole winter season
- strong surface energy fluxes have a strong impact on the ABL
- high-resolution simulations are needed

-COSMO-FESOM simulations can represent the polynya formation processes realistically

-previous studies seem to overestimate the ice production by the polynyas

In-situ observations at the Laptev polynya

