

Storm-permitting Ensemble

Nigel Roberts, Giovanni Leoncini and Changgui Wang Joint Centre for Mesoscale Modelling, Readin g

We shouldn't believe high-resolution at face value (at or near the grid scale)

Wednesday 0300Z 04/11/2009 (t+6h)

Consequence of uncertainty in forecasting local weather (e.g. pdf for showers)

We don't need an ensemble to produce a probability forecast

Nearby grid squares provide plausible alternative scenarios – and can therefore be treated as ensemble members

The so called 'neighbourhood' approach. Can work well.

We shouldn't believe high-resolution at face value

What if distribution of instability is NOT well predicted at larger scale

Wednesday 0300Z 04/11/2009 (t+6h)

Convective-scale Ensemble

Plan to routinely run a 2.2 km ensemble from 2012, embedded within MOGREPS-R (18 km -> 12 km) ensemble. **36-hour forecasts** 12 members 6-hour cycling No high-res perturbations initially

Initial experiments

Cases 24 members 1.5 km

Towards 3-6 members 1.5 km

How the UKV ensemble was run

Thanks to Neill Bowler and Changgui Wang

First case Hailstorm in Ottery

Dramatic thunderstorm Very localised Flash floods in Otter Valley

Courtesy of Ken Mylne

MOGREPS-R (24 km) output

Mesoscale variability, NO large precipitation totals

Courtesy of Caroline Jones

θ_w 950 hPa

MOGREPS output 00 UTC 30/10/08 T+18 - selected members

MOGREPS output00 UTC 30/10/08(top)UKV 6-hour accumulations(bottom)

Computed on 4.5km grid – Changgui Wang

The question of ensemble size

24 members at 1.5 km is too expensive!

How good is a smaller ensemble?

Probability of an 'extreme' event within 36x36km squares

Traditional clustering method found wanting – weighted sampling should be better

Adaptive neighbourhood processed probabilities

Comparison of ensemble sizes

What about model grid spacing?

24 members at 1.5 km is too expensive!

Coarser resolution buys more members

Morpeth flood event 5-6 Sept 2008

Probability of exceeding 50mm in 17 hours

UKV 24 members

2.2 km compared to 1.5 km

Focus of convection is moved from coastal strip to over the sea

Number of pixels exceeding the 'extreme' threshold 50mm in 6 hours from all 24 members

2.2 km compared to 1.5 km

Focus of convection is moved from coastal strip to over the sea

Number of pixels exceeding the 'extreme' threshold 30mm in 1 hour from all 24 members. Short-lived very heavy rain only over the sea in forecasts

Comparison of ensemble sizes and resolution

Another case

Nonlinear storm feedbacks are resolution sensitive

Updraft strength, turbulence, microphysics, lid, warmth, humidity, flow

Storm-permitting ensemble - findings

High resolution crucial for predicting high-impact local weather

Important to represent mesoscale uncertainty (larger-scale flow)

Neighbourhood processing can effectively increase ensemble size and represent small-scale uncertainty

Neighbourhood processing can adapt to ensemble spread and scales of uncertainty

Ensemble size – a small ensemble can do a reasonable job if processed intelligently

Model resolution – 12-member 2.2 km ensemble is comparable or better than 6-member 1.5 km ensemble (except perhaps for most extreme situations)

Beware – resolution dependence can be crucial in some situations. Need to understand biases. Incorporate physics uncertainties.

Thanks for listening.