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Abstract
Two simple ensemble approaches based on downscaling of the 
ECMWF-EPS over Europe during winter 2002/03 using DMI-
HIRLAM have been investigated. The first approach integrated 
all the individual members of the ECMWF-EPS to address initial 
as well as boundary state uncertainty. The second ensemble 
approach utilized multiple parameterization schemes for con-
vection and condensation to address some of the model errors. 
A verification against observations of 10m wind speed shows 
no significant enhancement on average by the first DMI-HIR-
LAM ensemble approach with respect to the host model en-
semble. For the second approach a best member strategy was 
tested in order to investigate the possibilities of such a method 
in the case of this simple ensemble.

The use of a simple dynamical downscaling of all members from the 
global ECMWF-EPS using the higher resolution HIRLAM model does
not improve the 10m wind predictions over Denmark on average. 
Possibly, the benefit of a simple dynamical downscaling is only seen 
in complex terrain and in extreme weather.

Conclusions

The application of a best member/combination strategy on a 5-mem-
ber HIRLAM multiple-scheme ensemble was tried in a second experi-
ment of this work. Apart from the difficulties connected with a robust 
identification of the best member/combination, the 5-member HIR-
LAM ensemble has the deficiency that all members were driven by 
the same initial and boundary conditions, which kept the spread be-
tween the members small. A trial to exploit the strategy for short-
range forecasting has not yet shown the desired result.
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A comparison of the 50+1 DMI-HIRLAM 
ensemble and the ECMWF ensemble
The predicted wind speed was verified against SYNOP station obser-
vations inside the inner HIRLAM domain (II in Fig. 1; Feddersen and 
Sattler, 2005). Both the HIRLAM and the ECMWF ensemble predic-
tions were verified for a lead time up to 72 hours.

Both the DMI-HIRLAM and the ECMWF ensemble exhibit a positive 
bias in 10m wind speed, which increases with the ensemble spread
(Fig. 2). Fig. 2 also indicates that the DMI-HIRLAM ensemble bias is 
larger than in the ECMWF ensemble.

The ensemble spread (ratio of the difference between 90% and 10% 
ensemble quantile and the respective quantile range of the observa-
tions in the same period) of the DMI-HIRLAM and the ECMWF en-
semble are simillar. The ECMWF ensemble exhibits a larger spread at 
the shortest lead times, whereas the DMI-HIRLAM ensemble shows a 
slightly larger spread after 42 hours (Fig. 3 left panel). The former 
may be due to the fact that the ECMWF ensemble includes stochastic 
adaptation of the tendencies from the physical parameterizations.
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Because of the larger bias of the DMI-HIRLAM ensemble, the capture 
rate (here: percentage of observations falling within the 10% and 90%
quantile) of the DMI-HIRLAM ensemble remains below the rate from 
the ECMWF ensemble even at the 72 hour range (Fig. 3 right panel).

The increase of the bias with the ensemble spread (Fig. 2) may be a
first indicator for a spread-skill relationship. This becomes, however, 
less obvious when looking at the average correlation in time between 
the ensemble mean and the verifying observations (Fig. 4). 
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Fig. 4

The significant drop in correlation in the 50% category in the HIR-
LAM predictions at 0 lead time is a result of lack of data, as the spread 
almost always falls in the low spread category for 0 lead time. The fact 
that DMI-HIRLAM was initialized by the host model only without incor-
poration of the HIRLAM data assimilation may play an important role 
here.

A best member/combination strategy tested 
for the 5 member DMI-HIRLAM multiple 
scheme ensemble

The second DMI-HIRLAM ensemble consists of N=5 simulations using 
different schemes for convection/condensation. It was used for testing 
a best member (BM) strategy adopted from Roulston and Smith (2003), 
which is based on the normalized distance between an ensemble 
member and the verification in the parameter space of d variables:

where xi,k is the forecast of ensemble member i, yk is the verifying ob-
servation, and Ωk is the standard deviation of the simulation ensemble 
for the kth variable. A BM is then identified by the minimum of R2

i,d. The 
variables of the parameter space may consist of different forecasts,
forecast quantities, locations or lead times. The choice of the dimen-
sion d of the underlying parameter space should ideally have no im-
pact on the identification of the BM. The condition

(1)

should ideally hold for the BM for all d. If it is not fulfilled, then a false 
best member has been identified. The fraction of how often (2) is full-
filled gives an indication on the usefullness of the BM identification.

The BM strategy of Roulston and Smith (2003) was extended such 
that in addition to the single members all possible combinations of the 
ensemble members were taken into account, too. For the current en-
semble there are 26 combinations. This results in 31 possibilities for 
the forecast, from which the best member/combination (BMC) was 
determined.

This investigation made use of parameter spaces consisting of differ-
ent variables, locations and lead times. Variables were 10m wind 
speed (v10) and direction (d10), mean sea level pressure (mslp), 
2m temperature (t2m) and 2m relative humidity (rh2m). The locations 
were SYNOP stations in Denmark with no or very few missing obser-
vations within the simulation period (Fig. 5).

Multivariate parameter space
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Ensemble members

The second DMI-HIRLAM ensemble consisted of five simulations with 
5 different parameterization schemes for convection and for conden-
sation. The host model data was taken from the ECMWF-EPS control 
simulations. A best member/combination strategy was tested with this 
DMI-HIRLAM ensemble.

The DMI-HIRLAM model configuration outlined above was used for 
both HIRLAM ensembles.

Model configuration

The model setup is a 1-way nested system of the DMI-HIRLAM ver-
sion of 2003. There are two HIRLAM domains (Fig. 1). The outer HIR-
LAM model (I) is nested to the global ECMWF TL255L31 model of the 
EPS. Depending on the HIRLAM ensemble (see below), this is the 
control or one of the perturbed members. It has a 0.6° horizontal grid 
and 31 vertical levels, and it is initialized at 12 UTC by the ECMWF 
analysis. The lateral boundaries are updated every 6 hours. The outer 
HIRLAM model runs with a semi-Lagrangian advection scheme, and 
the time step in dynamics and physics is 600s.

The inner DMI-HIRLAM (II in Fig. 1) model has a 0.2° horizontal grid 
and also 31 vertical levels. It is initialized and updated hourly at the 
lateral boundaries by the outer model. The advection is of Eulerian 
type, and the time step for the dynamics is 90s, and 540s for the 
physical parameterizations.

The first DMI-HIRLAM ensemble of this investigation consisted of 
50+1 simulations, each of which was driven by data from one of the 
ECMWF-EPS members. A comparison between this DMI-HIRLAM
ensemble and the ECMWF ensemble is shown below.

Model simulations

The DMI-HIRLAM simulations were performed on a daily basis over 
the period between 2002-12-08 and 2003-03-29. The simulations 
were started at 12 UTC with a lead time of 72 hours. The ensemble
setup (see above) was such that all members could be integrated
within one day.

Experiment description

Fig. 6
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Different sets of variables, locations and lead times were regarded in 
order to try to optimize the BMC identification. For this purpose the 
fraction of the identified BMC was determined by

(3)

where nBMC denotes the frequency of how often the identified BMC was 
the best one when performing nd tests according to (2), and  ndays is the 
number of days in the simulation period. This is a complementary for-
mulation to the fraction of false best members used by Roulston and 
Smith (2003).

Fig. 6 shows the mean fraction of the BMC for different variable com-
binations (in colors) as a function of the choice of two sets of SYNOP 
locations (red (s01) and red+green (s03) in Fig. 5) and different ran-
ges of lead time (3-72h, 24-72h, 48-72h, 60-72h). Only the parameter 
space "vd" (Fig. 6 left panel) with 4 sites included (S01) and regarding 
the lead time beyond 60h (ts060-072) reaches values over 0.6, which 
indicates the difficulties connected to the identification of a best mem-
ber/combination. However, deficiencies in the underlying ensemble
simulations may also play a role.

In an operational environment the best member/combination is not 
known in advance when forecasts are to be issued. In order to simu-
late such a situation, the BMCs identified for the recent days z-m, with
 m=1,..,14 were used to select a member/combination for the forecast 
to be issued for day z and beyond. This selected member/combination 
(SMC) was identified on basis of <fBMC> as follows:

The forecasts created by this selection strategy were verified for v10 
against the SYNOP stations shown in red in Fig. 5. Fig. 7 shows re-
sults for station Årlsev for two choices of variable combination as an 
example. 

A quasi-operational trial

(4)
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