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1 Introduction and Questions

MOIST SVs

• What are the relative effects of initial perturbations (or errors) in the dynamical fields versus

the moisture field?

• Are similar structures optimal for affecting both perturbation energy and precipitation?

• Is convective or non–convective precipitation generally more sensitive to initial perturba-

tions?

ENSEMBLE PREDICTION AND SV SPECTRA

• obvious interest regarding data assimilation and predictability

• importance of SVs for covariance and ensemble prediction

• Hessian SVs and Spectra
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2 Singular Vectors (SVs) and Norms

The problem:

Given a linearized model

y = Mx

Find the x that maximizes

L2 = yTL2y

Given

L1 = xTL1x

The solution:

x = L
−

1

2

1 z

where

L
−

1

2
T

1 MTL2ML
−

1

2

1 z = λz

Note: Different norms at initial and final times.
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Norms Considered

Energy Norm:

E =
1

Nw

∑

i,j,k

∆σk

(
u′2

i,j,k + v′2
i,j,k

)
+

Cp

TrNt

∑

i,j,k

∆σkT ′2
i,j,k +

RTr

p2
srNt

∑

i,j

p′2s i,j (1)

Moist Energy Norm (dry fields zero):

Em =
L2

CpTrNt

∑

i,j,k

∆σkq′2i,j,k (2)

Precipitation Rate Norm (used only as end–time norm; non–convective + convective precipitation):

P =
1

Nt

∑

i,j

R′2
t i,j (3)

Dry and Moist Variance–weighted norm (penalize large q high up):

Vd =
1

Nw

∑

i,j,k

∆σk

(

u′2
i,j,k

Vu k
+

v′2
i,j,k

Vv k

)

+
1

Nt

∑

i,j,k

∆σk

T ′2
i,j,k

VT k
+

1

Nt

∑

i,j

p′2s i,j

Vp
(4)

Vm =
1

Nt

∑

i,j,k

q′2i,j,k

Vq k
∆σk (5)



Workshop on Short–Range Ensemble Prediction using Limited–Areas Models, October 2002 6

3 The Mesoscale Adjoint Modeling System MAMS2

The Mesoscale Adjoint Modeling System Version 2 (MAMS2)

• Primitive equations with water vapor

• Bulk PBL formulation (Deardorff)

• Stability–dependent vertical eddy diffusion (CCM3)

• RAS scheme (Moorthi and Suarez)

• Stable–layer precipitation

• ∆x = 80km

• 20–level model (∆σ = 0.05)

• ptop = 100 or 10 mb

• 12–hour forecasts for 4 synoptic cases
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6 sets of SVs for each case

• E → E

• Em → E

• Vd → E

• Vm → E

• Vd → P

• Vm → P

A larger value of E can be produced with an initial constraint

Vm = 1 compared with Vd = 1.
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4 Moist SVs: Results and Relevance

• Cases

• Amplifications

• Horizontal properties of SVs

• Vertical structures of SVs

• A peculiar SV

• Final–time SVs and growth mechanisms

• Nonlinear considerations and correlations
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5 SVs: Covariance Prediction and Spectra
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Uncertainty Prediction: Hessian SVs
The HSVs Z0 solving the eigenvector problem:

M
T
C

T
CMZ0 = (Pa)−1

Z0Λ s.t. Z
T
0 (Pa)−1

Z0 = I (5.0.1)

are, when time–evolved, eigenvectors of Pf , because:

(

C MP
a

)

M
T

︸ ︷︷ ︸

≡Pf

C
T

CMZ0
︸ ︷︷ ︸

≡Zt

=
(

CMP
a

)

(Pa)−1
Z0Λ →

(

CP
f
C

T
)

Zt = ZtΛ

(5.0.2)

The evolved HSVs Zt are the eigenvectors of CPfCT – which is the forecast error covariance in the

“final–time norm” C. Note the final–time orthogonality relationship:

Z
T
t Zt =

(

CMZ0

)T(

CMZ0

)

= Z
T
0 M

T
C

T
CMZ0

︸ ︷︷ ︸
=
︷ ︸︸ ︷

Z
T
0 (Pa)−1

Z0 Λ = Λ → Z
T
t Zt = Λ

(5.0.3)
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Uncertainty Prediction: The SV–Decomposition of Pa

• Because the initial–time SVs satisfy (5.0.1), it is true that Pa can be written as:

P
a = Z0Z

T
0 (5.0.4)

This is a special square–root for Pa (different from eigendecomposition and also not lower–

triangular) → the SV–decomposition of Pa

• Under linear dynamics this SV–decomposition becomes the eigendecomposition of the fore-

cast error covariance matrix, because (5.0.5) is the same as (5.0.2) together with (5.0.3):

(

CM

)

P
a

(

CM

)T

=
(

CM

)

Z0Z
T
0

(

CM

)T

→ CP
f
C

T = ZtZ
T
t

(5.0.5)

• SV–decomposition implemented at ECMWF for generation of initial–time perturbations in

the Ensemble–Prediction–System (only partly operational)
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Multinormal Sampling Based on SV–Decomposition of Pa

• Transforming random variables

q ∼ N (0, I) ⇒ x = xc
0 + V1/2

q → x ∼ N (xc
0, V) (5.0.6)

• Use SV–decomposition of Pa (possibly truncated to N SVs) in (5.0.5) – to describe square–

root of P
a – in process of generating initial–time perturbed states x:

(Pa)1/2 = Z0
(N) (5.0.7)

xi = xc
0 + Z(N)

0 qi i = 1, 2, ..., M ⇒ x ∼ N

(

xc
0, (P

a)(N)
)

(5.0.8)

• Generating perturbations consistent with Pa knowledge based on N SVs

• Assumes normally distributed analysis errors; • non–eigendecomp. → eigendecomp.

• Taking SV properties into nonlinear regime

• Strong similarity to operational rotation at ECMWF

• free parameters: N and M
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Figure 1: no caption.

exp. H1i1 QG model

left: initial pert.1

right: final pert.1

rms left: 11.4 / 7.2 / 4.4 m

rms right: 15.1 / 10.8 / 6.9 m

final = 2 days
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Singular–Vector Spectra

• slope and shape of spectrum → relevant for truncations

• investigations with MAMS2

• dry truncated R-norm (14 Feb 1982): 169 growing SVs out of 4830 dimensions

• references:

Errico, Ehrendorfer, and Raeder 2001 ... Tellus

Ehrendorfer, Errico, and Raeder 1999 ... JAS
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6 Conclusions

• The effect of “optimal” moisture perturbations can be as great as optimal perturbations of

wind or temperature, even regarding their effects on wind and temperature.

• The geographic locations of leading SVs can be very dependent on the specific norms con-

sidered.

• The vertical structures of leading SVs can vary greatly from case to case, even when the same

norms are considered.

• In some cases, leading SVs having only initial perturbations of wind and temperature produce

nearly identical final–time SVs as those produced by the leading SVs having only moisture

perturbations → inferred dependence on moist specific enthalpy.

• In most cases, different structures optimize the different final–time norms.

• An example of an initial–time SV dominated by wind divergence above the tropopause was

obtained.
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• Sensitivities to non–convective precipitation have not been shown to always dominate sensi-

tivities to convective precipitation.

• TLM results of precipitation processes over 12 hours match NLM results quite well, even for

perturbations as large as 2 g kg−1.

• The effects of possible moisture errors and of appropriately linearized moist physics should

not be neglected or treated as second–order.

• Hessian SVs

• Multinormal Sampling

• Spectra and number of growing SVs
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