SINGULAR VECTORS IN A MOIST

LIMITED-AREA MODEL

Martin Ehrendorfer

Institut für Meteorologie und Geophysik Universität Innsbruck

with R.M. Errico (DAO), K.D. Raeder (NCAR)

Presentation at

Workshop on Short–Range Ensemble Prediction using Limited–Areas Models

Instituto Nacional de Meteorología (INM), 3 – 4 October 2002

Contents

1	Introduction and Questions	3
2	Singular Vectors (SVs) and Norms	4
3	The Mesoscale Adjoint Modeling System MAMS2	6
4	Moist SVs: Results and Relevance	8
5	SVs: Covariance Prediction and Spectra	9
6	Conclusions	15

1 Introduction and Questions

MOIST SVs

- What are the relative effects of initial perturbations (or errors) in the **dynamical** fields versus the **moisture** field?
- Are similar structures optimal for affecting **both** perturbation energy and precipitation?
- Is **convective** or **non–convective** precipitation generally more sensitive to initial perturbations?

ENSEMBLE PREDICTION AND SV SPECTRA

- obvious interest regarding data assimilation and predictability
- importance of SVs for covariance and ensemble prediction
- Hessian SVs and Spectra

2 Singular Vectors (SVs) and Norms

The problem:

Given a linearized model

Find the x that maximizes

$$L_2 = \mathbf{y}^{\mathrm{T}} \mathbf{L}_2 \mathbf{y}$$

 $\mathbf{y} = \mathbf{M}\mathbf{x}$

Given

 $L_1 = \mathbf{x}^{\mathrm{T}} \mathbf{L}_1 \mathbf{x}$

The solution:

$$\mathbf{x} = \mathbf{L}_1^{-\frac{1}{2}} \mathbf{z}$$

where

$$\mathbf{L}_{1}^{-\frac{1}{2}\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{L}_{2}\mathbf{M}\mathbf{L}_{1}^{-\frac{1}{2}}\mathbf{z} = \lambda \mathbf{z}$$

Note: *Different* norms at initial and final times.

Norms Considered

Energy Norm:

$$E = \frac{1}{N_w} \sum_{i,j,k} \Delta \sigma_k \left(u_{i,j,k}^{\prime 2} + v_{i,j,k}^{\prime 2} \right) + \frac{C_p}{T_r N_t} \sum_{i,j,k} \Delta \sigma_k T_{i,j,k}^{\prime 2} + \frac{RT_r}{p_{sr}^2 N_t} \sum_{i,j} p_{s\,i,j}^{\prime 2} \tag{1}$$

Moist Energy Norm (dry fields zero):

$$E_m = \frac{L^2}{C_p T_r N_t} \sum_{i,j,k} \Delta \sigma_k q_{i,j,k}^{\prime 2} \tag{2}$$

Precipitation Rate Norm (used only as end-time norm; non-convective + convective precipitation):

$$P = \frac{1}{N_t} \sum_{i,j} R_{t\ i,j}^{\prime 2}$$
(3)

Dry and Moist Variance–weighted norm (penalize large q high up):

$$V_{d} = \frac{1}{N_{w}} \sum_{i,j,k} \Delta \sigma_{k} \left(\frac{u_{i,j,k}^{\prime 2}}{V_{u \ k}} + \frac{v_{i,j,k}^{\prime 2}}{V_{v \ k}} \right) + \frac{1}{N_{t}} \sum_{i,j,k} \Delta \sigma_{k} \frac{T_{i,j,k}^{\prime 2}}{V_{T \ k}} + \frac{1}{N_{t}} \sum_{i,j} \frac{p_{s \ i,j}^{\prime 2}}{V_{p}}$$
(4)
$$V_{m} = \frac{1}{N_{t}} \sum_{i,j,k} \frac{q_{i,j,k}^{\prime 2}}{V_{q \ k}} \Delta \sigma_{k}$$
(5)

3 The Mesoscale Adjoint Modeling System MAMS2

The Mesoscale Adjoint Modeling System Version 2 (MAMS2)

- Primitive equations with water vapor
- Bulk PBL formulation (Deardorff)
- Stability–dependent vertical eddy diffusion (CCM3)
- RAS scheme (Moorthi and Suarez)
- Stable–layer precipitation
- $\Delta x = 80$ km
- 20–level model ($\Delta \sigma = 0.05$)
- $p_{top} = 100 \text{ or } 10 \text{ mb}$
- 12-hour forecasts for 4 synoptic cases

6 sets of SVs for each case

- $E \to E$
- $E_m \to E$
- $V_d \to E$
- $V_m \to E$
- $V_d \rightarrow P$
- $V_m \to P$

A larger value of E can be produced with an initial constraint $V_m = 1$ compared with $V_d = 1$.

4 Moist SVs: Results and Relevance

- Cases
- Amplifications
- Horizontal properties of SVs
- Vertical structures of SVs
- A peculiar SV
- Final-time SVs and growth mechanisms
- Nonlinear considerations and correlations

5 SVs: Covariance Prediction and Spectra

Uncertainty Prediction: Hessian SVs

The HSVs Z_0 solving the eigenvector problem:

$$M^{\rm T}C^{\rm T}CMZ_0 = (P^{\rm a})^{-1}Z_0\Lambda \qquad s.t. \quad Z_0^{\rm T}(P^{\rm a})^{-1}Z_0 = I \qquad (5.0.1)$$

are, when time–evolved, eigenvectors of P^f, because:

$$\underbrace{ \left(C \underbrace{\mathsf{M}\mathsf{P}^{\mathsf{a}}}_{\equiv \mathsf{P}^{\mathsf{f}}} \mathsf{M}^{\mathrm{T}} \underbrace{\mathsf{C}^{\mathrm{T}} \underbrace{\mathsf{C}\mathsf{M}\mathsf{Z}_{0}}_{\equiv \mathsf{Z}_{\mathsf{t}}} = \left(\mathsf{C}\mathsf{M}\mathsf{P}^{\mathsf{a}} \right) (\mathsf{P}^{\mathsf{a}})^{-1} \mathsf{Z}_{0} \mathsf{\Lambda} \qquad \rightarrow \\ \underbrace{ = \mathsf{P}^{\mathsf{f}}}_{\equiv \mathsf{Z}_{\mathsf{t}}}$$

$$\left(\mathsf{C}\mathsf{P}^{\mathsf{f}}\mathsf{C}^{\mathrm{T}}\right)\mathsf{Z}_{\mathsf{t}}=\mathsf{Z}_{\mathsf{t}}\mathsf{\Lambda}$$
(5.0.2)

The evolved HSVs Z_t are the eigenvectors of CP^fC^T – which is the forecast error covariance in the "final–time norm" C. Note the final–time orthogonality relationship:

$$Z_{t}^{T}Z_{t} = \left(\mathsf{CM}Z_{0}\right)^{T}\left(\mathsf{CM}Z_{0}\right) = Z_{0}^{T}\underbrace{\mathsf{M}^{T}\mathsf{C}^{T}\mathsf{C}\mathsf{M}Z_{0}}_{(5.0.3)} = \overbrace{Z_{0}^{T}(\mathsf{P}^{a})^{-1}Z_{0}}^{T}\Lambda = \Lambda \quad \rightarrow \quad \left[\begin{array}{c} Z_{t}^{T}Z_{t} = \Lambda \\ (5.0.3)\end{array}\right]$$

Uncertainty Prediction: The SV–Decomposition of P^a

• Because the initial-time SVs satisfy (5.0.1), it is true that P^a can be written as:

$$\mathsf{P}^{\mathsf{a}} = \mathsf{Z}_{\mathsf{0}}\mathsf{Z}_{\mathsf{0}}^{\mathrm{T}} \tag{5.0.4}$$

This is a special square–root for P^a (different from eigendecomposition and also not lower–triangular) \rightarrow the **SV–decomposition of** P^a

• Under linear dynamics this SV-decomposition becomes the eigendecomposition of the forecast error covariance matrix, because (5.0.5) is the same as (5.0.2) together with (5.0.3):

• SV-decomposition implemented at ECMWF for generation of initial-time perturbations in the Ensemble-Prediction-System (only partly operational)

Multinormal Sampling Based on SV-Decomposition of P^a

• Transforming random variables

$$\mathbf{q} \sim \mathcal{N}(0, \mathsf{I}) \qquad \Rightarrow \qquad \mathbf{x} = \mathbf{x}_0^c + \mathsf{V}^{1/2} \mathbf{q} \qquad \rightarrow \qquad \mathbf{x} \sim \mathcal{N}(\mathbf{x}_0^c, \mathsf{V})$$
(5.0.6)

Use SV-decomposition of P^a (possibly truncated to N SVs) in (5.0.5) – to describe square-root of P^a – in process of generating initial-time perturbed states x:

$$(\mathsf{P}^{a})^{1/2} = \mathsf{Z}_{0}^{(N)} \tag{5.0.7}$$

$$\mathbf{x}_{i} = \mathbf{x}_{0}^{c} + \mathsf{Z}_{0}^{(N)} \mathbf{q}_{i} \qquad i = 1, 2, ..., M \quad \Rightarrow \qquad \mathbf{x} \sim \mathcal{N}\left(\mathbf{x}_{0}^{c}, (\mathsf{P}^{\mathsf{a}})^{(N)}\right) \qquad (5.0.8)$$

- Generating perturbations consistent with P^a knowledge based on N SVs
- Assumes normally distributed analysis errors; non–eigendecomp. \rightarrow eigendecomp.
- Taking SV properties into nonlinear regime
- Strong similarity to operational *rotation* at ECMWF
- free parameters: N and M

Singular–Vector Spectra

- slope and shape of spectrum \rightarrow relevant for truncations
- investigations with MAMS2
- dry truncated R-norm (14 Feb 1982): **169** growing SVs out of 4830 dimensions
- references:

Errico, Ehrendorfer, and Raeder 2001 ... Tellus

Ehrendorfer, Errico, and Raeder 1999 ... JAS

6 Conclusions

- The effect of "optimal" moisture perturbations can be as great as optimal perturbations of wind or temperature, even regarding their effects on wind and temperature.
- The geographic locations of leading SVs can be very dependent on the specific norms considered.
- The vertical structures of leading SVs can vary greatly from case to case, even when the same norms are considered.
- In some cases, leading SVs having only initial perturbations of wind and temperature produce nearly identical final-time SVs as those produced by the leading SVs having only moisture perturbations → inferred dependence on moist specific enthalpy.
- In most cases, different structures optimize the different final-time norms.
- An example of an initial-time SV dominated by wind divergence above the tropopause was obtained.

- Sensitivities to non-convective precipitation have not been shown to always dominate sensitivities to convective precipitation.
- TLM results of precipitation processes over 12 hours match NLM results quite well, even for perturbations as large as 2 g kg⁻¹.
- The effects of possible moisture errors and of appropriately linearized moist physics should not be neglected or treated as second–order.
- Hessian SVs
- Multinormal Sampling
- Spectra and number of growing SVs

References

- Ehrendorfer, M., R.M. Errico, and K.D. Raeder, 1999: Singular–vector perturbation growth in a primitive equation model with moist physics. *J. Atmos. Sci.*, **56**, 1627–1648.
- Errico, R.M., M. Ehrendorfer, and K. Raeder, 2001: The spectra of singular values in a regional model. *Tellus*, **53A**, 317–332.
- Errico, R.M., K. Raeder, and M. Ehrendorfer, 2002: Singular vectors for moisture–measuring norms. In preparation for Quart. J. Roy. Meteor. Soc..
- Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.