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Motivation and overview
Model problem: shallow water equations

Numerical formulation ingredients:
> semi-implicit semi-Lagrangian time integration
» discontinuous Galerkin space discretization
> p-adaptivity strategy

Numerical validation:
> L&uter unsteady test
McDonald’s and Bates cross-polar flow
Williamson'’s test 5
Williamson'’s test 6
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Conclusions and future plans
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Motivation

» Goal: design a new generation nonhydrostatic dynamical core for
regional climate modelling system RegCM, developed at Abdus Salam
ICTP-Trieste, in the Earth System Physics group led by F. Giorgi.

june 12006

» Discontinuous Galerkin (DG) based models are very appealing, but ...
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Overview(l): DG challenging issues

» ... when coupled to explicit time stepping, DG methods are affected by
severe ‘ stability restrictions ‘ as polynomial order increases:

“The RKDG algorithm is stable provided the following condition holds:
uAt<< 1
h 2p+1
where p is the polynomial degree; (for the linear case this implies a CFL limit ‘5 )’
Cockburn-Shu, Math. Comp. 1989

» ... moreover DG requires | more degrees of freedom | per element than
Continuous Galerkin (CG) approach, thus more expensive.

To increase computational efficiency of DG we exploit two ideas:
> ‘ coupling DG to SI-SL techniques (no CFL conditions) ‘

» | introduction of p-adaptivity (flexible degrees of freedom)

= p-SISLDG (G.Tumolo, L.Bonaventura, M.Restelli, J. Comput. Phys., 2013)

» as first step employed in a simple modelling framework (SWE),
» then to be applied to a fully nonhydrostatic dynamical core for RegCM.
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Overview(ll). Governing egs: link btw. SWE and NH vertical slice egs.

Euler equations (forget Coriolis force for a moment):

Dp

— V-u=0

Dt+p )

Du+1V -~ K
ot p = —gk,
DO

— =0,

Dt

(being D% the Lagrangian derivative, R the constant of dry air) , can be written using
©=T(£) "% N= (&) as thermodynamic variables:
bn

= — )NV -u=0,
Dt+(“/ ) u

%‘: + OV = —gk,
De
T
where v = cp/cy.
Decompose thermodynamic variables in basic state and perturbation:
nix,y,z,t)==n"(z) + n(x,y,2z,1t)
o(x,y,z,t) = 0"(2) + 0(x, y, z, 1)

«
where 7*, 6* are chosens.t. cpf* 92~ = —g,
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and consider a vertical slice (8% =0):

%+(v71)ﬂv~u:0,
% +cp@2—: =0,

Dw o 6
Ft-&-cpea—z—gg—* =0,
D6 do*
Dt dz

The SISL semi-discretization is:
n™' — E(t", AN

At
u™t — E(t", At)u . o "1 . on
e S R E(", AHe] 2L 1 E({", At el =o,
a2 oG lE( A0RIZT 4 (1~ a)eek(r A0 03T ]
w™ — E(t", AH)w g 1 o
—— T L ag[E(t", ADO]— —
Ar +aG[E(t, ANG] - ag—— +

+(1 — a)epE(t", At) [GZ—H -1 - a)gE(t”,At)[ei*] =0,

0" — E(t", ALO do* *
- Jr le%

Dt dz

ae
n+1 n
1—a)E(t, A

w4 ( a)E(t", t)[dz

w} =0.
where:
> G"=G(-,t"),

> « € [0, 1] is a fixed implicitness parameter,

> E(t", At) = SL-evolution operator associated to u": [E(t", At)G] (x) = G"(xp).

+al(y =NV - u"" + (1 = a)(y — DE{", ANV - u] =0,
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SL evolution operator on scalar valued functions

tn+1
Xp =X — / u’ (X(t; t”*‘,x)) at,
tn

where X(t; ", x) is the solution of:

SX(,x) = u" (X (67, x))
X(t" T x) = x

X (41

In practice two steps are required to compute [E(t", At)G] (x):
1. departure point xp computation ( e.g. McGregor, Mon. Wea. Rev.,1993)
2. interpolation of G" at departure point.
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N™' 4+ aAt(y — YNV - o™ = E@", At) [n (1 — (1= a)At(y — 1)V - u)} ,

om M1 on
n+1 n - — n _ _ -
u 4 alte[E(17, At)O] Bx E(t", At) [u (1 — a)Atcpr©® ax},

o n+1 9n+1
w4 aAtcp[E(t",At)G)]a—Z —anlg—— =

o (%
E(t", A —(1—a)A — —g—
(1, t)[w ( ) t(c;:@az ga*ﬂ,

*

do
0™ = —ant
d

do*
. w™ + E(t", At) [e - (1= a)at— w}.

1z

Inserting the discretized energy eq. into the discrete vertical momentum eq.
(see e.g. M. Cullen Q.J.R. Meterol. Soc. 1990, or L. Bonaventura J. Comput. Phys. 2000):

g do™\ iy n L

1 A2 Atc[E(t", ANO]— =

( + (aAt) 9 oz )w + aAtcp[E(1, t)@]az
ar 0 g do*

E(t", At — (1 —a)At{cpO— —g— AtZE(t", A1) |6 — (1 — a)At

(t, )[W (1-a) <CP 52 ge*>]+a o (1, )[ (1-a) de],

— decoupling of discrete energy eq. from continuity and momentum egs.,
which now form a system of three egs. in three unknowns 7'y w1 .
after its solution, ™' can be recovered from the energy equation (now a
diagnostic equation) and © field can be reconstructed.
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So, the SISL discretization of the nonhydrostatic vertical slice equations is:

" 4 ant(y — YNV Ul = —xt + E(1", At) [n (1 — (1 —a)At(y = 1)V - uv)] ,

o n+1 o
U™+ anto[E(L", At)@]a—: = E(t", At) [u —(1- a)Atc,:G)a—:},

g do* - om "1

1 A= ) w n = =

( + (aAt) 9 oz >W + aAte[E(1, At)O] 9z

) 6 do*
il -9 )] + aAt—eg* E(t", At) [9 = (1 =)t~ w},

E(t", At) [w -(1- a)At(cPG) o7 a

to be compared with SISL semi-discretization of SWE in planar geometry:

W pant KVl = E(", At [h<1 —(1—a)Atv- uH>],

ohn+! ob oh  ob
n+1 n
Tt adtlg= = —altg=— + E({", A |u— (1 — a)Alg( — + =
@ 99)( o an (1", t)[ ( a) tg(ax 9X>}7
dh 1 ob oh  ob
n+1 n
+alAlg— = —alAlg— + E(t",At)|v— (1 — a)Alg( — + =
v « gay alAtg Y (t", t)[v ( a) tg( Y y)],

where uy = (u,w)", uy = (u,v)".
Conclusion: there is a one to one correspondence btw. SISL dicretized SWE
and NH vertical slice egs.,

m <« h,

U+« u,
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First step: SWE SISLDG model

SWE in vector form are considered:

Dh
jj? +hV . -u= 0,

Du

Dt

where h fluid depth, b bathymetry elevation, f Coriolis parameter.

+gVh+fk x u=—gVb,

Both continuity and momentum equation in advective form (SL approach).

Orthogonal curvilinear coordinates x, y are used:
> on the sphere x = X (lon.), y = 0 (lat.), my = acosy, my = a, a earth radius,
> on the plane x, y Cartesian and my = m, = 1.

(dl)? = midx® + mbdy®
D 0 u o0 v 0

Dt ~ ot " meox | m,ay’
Dx Dy

v=my g U= V).
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SISL time semi-discretization

Now continuity eq. also is discretized with SL approach ( new w.r.t. previous
SISLDG scheme)
n+1 n

%&”A”h = —a 'V W (1 - a) B, A1) (hV - u)

u™ — E(t", At)u

_ n+1 i n+1
N, a(th +gVb+fk x u )

~(1-a) E(t”,At)(th+ gvb + fk x u)

The SL-evolution operator on a vector valued function G(-, t) is again:
[E(t", At)G] (x) = G"(xp)

... but what of components?
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SL evolution operator on vector valued functions

G"(xp) = G¥(x0)i(xp) + G} (Xp)j(Xp) + GZ(xp)k(xXD)

In curved geometry (x) #* I(XD) ]( ) # j(xD), k(x) # k(xp), hence:

i(x)-G"(xp) = Gi(xp) i(x)-i(x0) +G}(xp) 7'(X)-7(XD)+Q§(XD) i(x)-k(xo),

J(%)-G"(xp) = Gi(xp) j(x)-i(xp)+3y(x0) j(x j(X)-
k(x)-G"(xp) = GY(xp)k(x)-i(x0)+Gy (xp)k(x )J(XD)+gz(xD)f<( )-k(x0),
i.e.
i(x)- [E(t", A G] (x) i(x) - i(xp)
J(x) - [E(t", ADG] (x) | = | J(x) -1
k(x) - [E(t", At)G] (x) j




SL evolution operator on vector valued functions

Four steps are then required to compute [E(t", At)G] (x) components w.r.t.
i(x),j(x), k(x) :

1.
2.

departure-point xp computation;

interpolation at departure point xp of G” components in the unit vector
triad at the same point x i.e. interpolation of G{, G/, G7;

. computation of rotation matrix R, which transforms vector components in

the departure-point unit vector triad i(xp), j(xp), k(xp) into vector
components in the arrival-point unit vector triad i(x), j(x), k(x);

. rotation of the interpolated components G{(xp), Gy (xp), G7(Xp) by the

matrix R.

No explicit metric terms;
in the limit At — 0, off diagonal elements of R generate metric terms;
no singularity at poles;

p q
-q p|’
where p = (Ri1 + Rz2)/(1 + Raz), g = (Ri2 — Rer)/(1 + Ras).

( A. Staniforth, A.A. White, N.Wood, Q.J.R.Meterol.Soc. 2010)

under shallow-atmosphere approximation R reduces to A =

THA-



SISL time semi-discretized equations in component form

W 4 aAt KV - u™ = E(t", At) (h — (1 —a)At hv - u)

n+1
u™ +aAt(gah —fu"“) = —aAti@—F
my Ox my Ox
h
M1 E(t", A) {u(1 fa)At(mi%erig—sffv) +
oh g ob
AoE(", A1) v — (1 —a)at( L 90 9 90y,
2E( ) (1-0) (my oy myoy )
n+1
v 4 aAt g on + ™| = —aAz‘i@Jr
my Oy my Oy
n (- g oh, gob_
At E(1", At) {u (1 a)At(mX o o ox fv) +
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DG space discretization

Defined a tassellation 7, = {Kj}\.; of domain Q and chosen VK; € 7, two
integers pf! > 0, p/ > 0, at each time level t", we are looking for approximate
solution s.t.

W € Hyp:= {f € L3(Q) : flx € @p;,(K,)}

n 2 2
u e Vii={gel’(Q) : gls € Qu(K)}
i.e. within each element K, the solution at time t” will be represented as:

(Bf+1)? (0] +1)? (of+1?
h"(x)\K/ = Z e (X, u”(x)|Kl = Z i ()], v”(x)|Kl = Z b ()],
r=1 r=1

r=1

The absence of a global continuity constraint, typical of discontinuous FEM,

» requires the definition of the solution at inter-element boundaries:
pb1: how to choose numerical fluxes ?
Centered fluxes are used ( F. Bassi and S. Rebay, J. Comput. Phys.
1997);

» makes easy the introduction of adaptivity in space by locally varying p;:
pb2: at each ", how to choose p; locally, i.e. for each element K; ?
A proper p-adaptation strategy is needed.
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p-adaptivity (l): choice of basis functions

p-adaptivity is further made easy by the use of modal bases.

Since structured meshes of quadrilaterals are employed (on the sphere
we use lon-lat coordinates), tensor products of Legendre polynomials
are a good choice as :

> hierarchical: good for adaptive computation of the py;
» orthogonal in Cartesian domain: fully diagonal mass matrix in that case.

Hence, within a given element K, the representation for a model variable

« becomes
P +1 pj* +1

a(x)]Kl = Z Z kWi k(XY (Y)-

k=1 I=1
with [ = (I, ly) suitable multi-index.
and its 2-norm is given by (in planar geometry):

P+

tot 2
& = E Qf k.l

k,I1=1
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p-adaptivity (ll): relative 'weights’ of modal components

» Then, for a given element K, € 7, the ’energy’ contained in the r— th
modal components of a|K/ is given by (again for planar geometry):

ro, 2
&= E aj

max(k,l)=r

» while, for any integer r =1,..., pf* + 1, the quantity

w = &
- tot
&

will measure the relative 'weight’ of the r—th modal components of a
with respect to the best approximation available for the L2 norm of a.

0=



p-adaptivity (lll): adaptation algorithm

If « is a generic model variable, the following adaptation criterion is applied:

» Compute all model variables with pmax at initial time.

» Given an error tolerance ¢; > Q forall | =1, ... N, at each time step
repeat following steps:
1) compute wp,

2.1) ifwp, > ¢, then

2.1.1) setpi(a) == pi(a) + 1
2.1.2) setajp = 0, exit the loop and go the next element

2.2) ifinstead wp; < €;, then
2.2.1) compute Wp, —1
2.2.2) ifwp_1 > €, exit the loop and go the next element
2.2.3) elseif Wp,—1 < €, set pi(«) := pj(ar) — 1 and go back to 2.2.1.

THA
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Fully discrete problem

» standard L2 projection against test functions (chosen equal to the basis
functions as in Direct Characteristic Galerkin scheme, Morton et al.,
M2AN 1988 ), followed by integration by parts (where necessary),

» introduction of (centered) numerical fluxes,
» expression of velocity d.o.f. in terms of depth d.o.f. from momentum
equations and and their substitution into the continuity equation,

give raise, at each Sl step, to a discrete (vector) Helmholtz equation in the
fluid depth unknown only, with computational stencil surrounding the element
K; given by

sparse block structured nonsymmetric linear system solved by GMRES with
block diagonal (for the moment) preconditioning.
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Numerical Validation
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L&auter unsteady flow: time convergence rate estimation (« = 0.50).

ph =4, p'=5 max(Ce) =17

[ Nx x N, [ At (min) | E (h) [ Ex(h) [ E..(h) |
10x 5 60 3287 x 1072 | 3631 x 107° [ 6.044 x 10~°
20 x 10 30 7201 x10~% | 7.871 x 10~* | 1.261 x 1073
40 x 20 15 1.680 x 10~ % | 1.844 x 10~% | 2.966 x 10~ *
[ Nx x Ny [ At (min) | E () [ Ex(u) [ E..(uv)
10x 5 60 3748 x 1072 | 4.821 x 1072 | 1.679 x 10~
20 x 10 30 1.012x 1072 | 1.288 x 102 | 3.107 x 1072
40 x 20 15 2574 x107% | 3214 x107% | 7.557 x 10~¢
[ N x N, [ At (min) | E (v) [ Ex(v) [ E.(v)
10x 5 60 6549 x 1072 [ 6.930 x 1072 [ 2.744 x 10"
20 x 10 30 1.586 x 1072 | 1.676 x 102 | 4.779 x 1072 .
40 x 20 15 3.956 x 107 | 4.180 x 107% | 1.491 x 1072 §




McDonald’s and Bates cross-polar flow

30 x 15 elements, p" =4, At =900s (Cge ~ 21, Cye ~ 1 close to poles).




Williamson’s test 5

Solution at day 15, 30 x 15 elements, max p" =4, At = 900s (Ce ~ 11 close
to poles).




Williamson'’s test 5: dynamic p-adaptation.

30 x 15 elements, max p" =4, At=900s (C ~ 11 close to poles).

etaatt=0 hours uatt=0hours

5800
15
. 5600
10
5400
5200 5
. 5000 0
-3 -2 -1 0 1 2 3
X
ph att=0 hours
15 3 45 1
4
1 1 P S L . L 08
35
4 05 ]
0% 3 0.6
> 0 1 25 > 0 1
0.4
-05 4 2 -05 1
= 4 5 - . : 4 0.2
1
-15 E| 05 ~15ks gy e 0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X X

-0
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Williamson’s test 6

Sol. atday 15, 40 x 20 elem., max p" =5, At=900s (Ceel = 21 close to
poles).




Williamson'’s test 6: dynamic p-adaptation

40 x 20 elements, maxp" =5, At=900s (Cey ~ 21 close to poles).

etaatt=0 hours uatt=0 hours
11000 100
10500 80
10000
60
9500
40
9000
20
8500
8000 0
X
p" att=0 hours
1.5F7 T T 45 60
4
1 40
35
20
0.5 3
> 0 25 0
-05 2 -20
15
A -
4 40
-15 0.5 -60

TN
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Williamson'’s test 6: static p-adaptation as control on Courant number
60 x 30 elements, maxp" =5, At=900s (Cgy ~ 48 close to poles).

max p" can be imposed locally in order to control the local Courant number:

p" v—diff @647100s

-3 -2 -1 0 1 2 3
X

= this leads to significant efficiency improvement:

#gmres-iterations(p” = adapted)
#gmres-iterations(p” = uniform)

~ 13%

(GMRES stopping criterion: % =101

N n 2
, +1)
Ay = 2= PLED” a7y,
dof N(pmax ¥ 1)2 0

A=
=4

( N = # of elements).



Williamson'’s test 6: static + dynamic p-adaptation

50 x 25 elements, maxp” =5, At=900s (Cee ~ 33 without adaptivity)

#gmres-iterations(p” = adapted)
#gmres-iterations(p" = uniform)

SE (o] + 1)
~18%, A, ==E=02 " 7 & 40%
’ % " N(Prmax + 1) ’

etaatt=0 hours uatt=0hours

10000 80
9500 60
9000 40
8500 20

8000 0

L3 X
p"att=0 hours vatt=0hours
15F , ; 15T R [ T AT 60
5

1 40
0.5 4 20

> 0 3 > 0
-05 —0.5 -20
» -40
15 4 15 -60

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3




Conclusions, open issues and future perspectives
> In summary:

> a SISL DG discretization for rotating SWE has been presented, extending
succesfully the SISL approach to DG framework;

> the proposed algorithm is presented on structured meshes, but, in principle,
it can be extended to arbitrary non-structured ones;

> a simple p—adaptivity approach allows to reduce the computational cost;
> numerical experiments prove the effectiveness of the proposed scheme.

» Now on the way:

> improvement of the linear solver for the Sl step: preconditioning strategy,
from block diagonal to ILU;

> improvement of the time-integration scheme: from 6-method to TR-BDF2;

» completion of implementation of the SISLDG scheme for nonhydrostatic
vertical slice equations.

» Future perspectives:

» comparison with other stiff time integration techniques (e.g. Rosenbrock and
exponential integrators);

> parallelization strategy;

> integration of SWE and vertical slice SISLDG discretizations to develop the
nonhydrostatic dynamical core for RegCM;

> development of a conservative version.
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