

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Performances of COSMO at 1km resolution

Guy de Morsier, Oliver Fuhrer, Marco Arpagaus, Pirmin Kaufmann, Francis Schubiger

10th International SRNWP-Workshop on Non-Hydrostatic Modelling, May 13, 2013, DWD, Offenbach

Why a 1 km deterministic forecast?

- Many **bulk properties converge** at O(1 km) resolution
- Many bulk properties have predictable biases

Bryan, 2007

C Reduced Uncertainty

(adapted from Klemp 2007)

O Better Topography

- Better near surface wind field (valley winds, Föhn, drag, ...)
- Better representation of surface heterogeneity (triggering)
- "Closer match to obs"

- Motivation
- Part I:
 - Stability of the new dynamical core with idealized experiments
- Part II:
 - Actual settings of the regular runs
 - Verification results for the last 2 seasons
- Summary
- Outlook

• 2-dimensional

U

• Schaer et al. MWR 2002 topography

 $h(x) = \left\{ egin{array}{ll} h_0 \cos^2\left(rac{\pi x}{\lambda}
ight) \cos^2\left(rac{\pi x}{2a}
ight) & |x| \leq a \ 0 & |x| > a \end{array}
ight.$

- 80 level SLEVE2 coord.
- $\Delta x=1.1$ km, Lx=401km
- ∆z=20-812m, Lz=22km
- ∆t=10s
- No humidity; Polytrope temp. gradient=0.0065K/m
- Tropopause at 12km
- Rayleigh sponge (>11.5km)

O

Time [h]

Time [h]

Mahrer pressure gradients, divdamp_slope=20, svc2=3km h_=1000m

Schaer Mah. H=1000m a=25km λ=8km U=0m/s dd_sl=20 ldyn_bbc=F c2=3kn Schaer Mah. H=2km a=25km λ=8km U=0m/s dd_sl=20 ldyn_bbc=F c2=3km

1

O

 2 different 80 level SLEVE2 coordinate systems
 with different layers thicknesses:
 Δz=101-490m, Lz=22.4km
 or
 Δz=20-812m, Lz=22km
 (same mean thicknesses)

divdamp_slope=60, svc2=3km, nrdtau=16

Big changes of $\Delta \mathbf{z}$

╢

O

Small changes of Δz

SRNWP 13-15 May 2013 Offenbach

Idealized test case II (shear flow)

• 2-dimensional

σ

- Schaer et al. MWR 2002 topography
- 80 level SLEVE2 coord.
- $\Delta x=1.1$ km, Lx=401km
- ∆z=20-812m, Lz=22km
- ∆t=10s
- No humidity; polytrope temp. gradient=0.0065 K/m
- Tropopause at 12km
- Rayleigh sponge (>11.5km)

10m/s west wind above 5km height

Idealized test case II (shear flow)

divdamp_slope=20, svc2=3km, nrdtau=16

Standard

1

U

Mahrer pressure gradients

Schaer H=1km a=25km λ=8km U=10m/s dd_sl=20 ldyn_bbc=F c2=3km Schaer Mah. H=1km a=25km λ=8km U=10m/s dd_sl=20 ldyn_bbc=F c2=3km

Summary Part I

- The stability can be analysed by using a selection of possible choices (e.g. the kind of lower or upper boundary conditions, the amount of divergence damping, etc.)
- The choice of the vertical levels (changes of layer thicknesses, SLEVE2 parameters) can have an impact on the stability of the model
- A truly horizontal pressure gradients following Mahrer (1984) shows better results
- But not all settings translate directly to the real world !

Part II: Experimental Run: Setup

- **Continuous 1km-assimilation cycle** since end of August 2012 (including latent heat nudging and snow analysis)
- Two forecasts per day (00/12 UTC) to +24h
- Driven by the operational COSMO-7km forecasts
- Run at CSCS in approx. 1h45' elapsed time with 2470 cores (60%) on CRAY XE6
- Visualization, monitoring and verification for evaluation purposes but not for production!

J

COSMO-1 Domain

• Ion × lat × lev = 1062 × 774 × 80

Guy de Morsier et al. @ MeteoSwiss

New Coordinate Transformation

 Generalized SLEVE (after Leuenberger et al. 2010) (ivctype=4, svc1=10km, svc2=3.5km, nfltvc=100, n=1.35)

Settings for dynamics and physics

- New fast waves solver (consistent 2nd-order accuracy, strong conservation form of divergence operator, increased divergence damping)
- Horizontal non-linear **Smagorinsky** diffusion
- No artificial horizontal diffusion
- Rayleigh damping of **all** variables at upper boundary (test running with condition on w **only** looks very similar)
- 6 category microphysics including **graupel** (as COSMO-2)
- **Standard** turbulence and multilayer soil module
- **Explicit** deep convection but Tiedtke shallow convection (C-2)
- Ritter-Geleyn radiation every 6'
- Roughness length only from land use $(Z_0 \le 1m)$
- No sub grid scale orography

Dew Point Temp. at 2m of COSMO-1 for SON 2012 DJF 2013

Standard Deviation CH +13-24h

Standard Deviation Alps +15-24h

10m Wind Speed of COSMO-1 for SON 2012 DJF 2013

Swiss domain +13-24h

Alps +15-24h

Guy de Morsier et al. @ MeteoSwiss

DJF13 O Precipitation of COSMO-1 COSMO-2 vs COSMO-7 vs COSMO-1 @ch for TOT_PREC1 & lt 13 1.5 1.3 10 5 2 3 Freq. Bias 0.1 1 (0.1)(0.5)(1)+) (2)× 0.8 0.8 0.8 (5) \diamond Crit. Suc. Ind. (10) ∇ Probability of Detection /4 0.6 0,6 0.5 0.4 +13h-24h 0.4 . 0.3 0.2 **1h** - 0.2 COSMO-2 accumulation COSMO-7 COSMO-1 0.0 (9 grid point 0.0 0.2 0.4 0.6 0.8 1.0 averaging) Success Ratio (1-FAR) SRNWP 13-15 May 2013 Offenbach Guy de Morsier et al. @ MeteoSwiss 22

Upper Air Temperature Verification COSMO-1 vs. COSMO-2 **DJF13**

UA verification: COSMO-1 yr, COSMO-2 for Dec/Jan/Feb 2013 (yyyres = 2013e1) +24h BIAS +24h STD +24h and the state of the 10100-12 all stations 180 180 풥 78 100 144 180 180 200 200 260 250 300 300 360 350 400 400 £ 5 480 460 600 600 660 660 800 800 700 700 780 780 800 800 **Electric** li pest 194 0.0 1.0 temperature [K] 2.0 3.0 temperature [K] -1.0 2.0 3.1 1.0 4.0 6.1 -20 0.0 coeme1 An - - ControZ

Upper Air Relative Humidity Verification COSMO-1 vs. COSMO-2 DJF13

UA verification: COSMO-1 ye, COSMO-2 for Dec/Jan/Feb 2013 (yyyyee = 2013e1)

Summary Part II

Autumn and winter verifications of COSMO-1 show **good results**:

- •Better humidity specially in the standard deviation (surface)
- •Slight **cold** bias (not for all stations)
- •Overestimation of 10m winds (except around 12 UTC)
- •Good precipitation scores
- •Similar upper air scores as COSMO-2

- New external parameters including:
 - a better representation of orography and roughness length using ASTER with a resolution of 30m (now 900m)
 - more detailed soil types using HWSD with a resolution of 1km (now 10km)
- Tests without shallow convection
- Changes to the turbulent scheme

Thank you for your attention! Questions?

O

Horizontal turbulent diffusion

