Representation of topography by the thin-wall approximation in a height coordinate

<u>Yuki Nishikawa</u>¹, Masaki Satoh¹

¹AORI, The University of Tokyo, Japan

10th SRNWP workshop, May 13st, 2013

Contents

- 1. Background
- 2. Model description
- 3. Thin-wall approximation
- 4. Mountain wave experiments
 - A. The height of mountain top is 10m
 - B. The height of mountain top is 400m
- 5. Summary

1. Background

- ✓ In higher resolution models (≤ 10km), the detailed topographical data is required.
- ✓ In terrain-following approach, only the upper and lower boundary conditions are imposed.
- This approach shows a relativity decent performance over gentler slopes.
- Over steeper slopes, this approach induces large truncation errors and tends to be numerically unstable.

Basic terrain-following

The terrain-following coordinate representation of a topography

We focus on the alternatives to the terrain-following approach.

Other representations

✓ Cut cell method

- This method satisfies a conservation law using a finite-volume method.
- Small cell problem occurs.
- ✓ Thin-wall approximation
 - The assumption that volume of cells intersected by the surface remains a full atmospheric cell.
 - The parts under topography is represented by thin walls.
 - Advection-form equations are used in pervious works such as
 Steppeler et al. (2002, 2006, 2011), Lock (2008), Lock et al. (2012).

Cut cell method

Purposes

✓ To implement the representation of topography by the thinwall approximation to fully compressible flux-form equations.

 \checkmark To confirm the conservation of momentum flux.

	Steppeler et al. (2002)	Our approach
	Advection-form	Flux-form
Equations	$\frac{\partial T}{\partial t} = -u\frac{\partial T}{\partial x} - w\frac{\partial T}{\partial z} - \frac{p}{\rho C_v} \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right)$ $\frac{\partial u}{\partial t} = -u\frac{\partial u}{\partial x} - w\frac{\partial u}{\partial z} - \frac{1}{\rho}\frac{\partial p}{\partial x}$ $\frac{\partial w}{\partial t} = -u\frac{\partial w}{\partial x} - w\frac{\partial w}{\partial z} - \frac{1}{\rho}\frac{\partial p}{\partial z} - g$ $\frac{\partial p}{\partial t} = -u\frac{\partial p'}{\partial x} - w\frac{\partial p'}{\partial z} + g\rho_0w - \frac{C_p}{C_v}p\left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right)$	$\frac{\partial \rho'}{\partial t} = -\frac{\partial \rho u}{\partial x} - \frac{\partial \rho w}{\partial z}$ $\frac{\partial \rho u}{\partial t} = -\frac{\partial \rho u u}{\partial x} - \frac{\partial \rho w u}{\partial z} - \frac{\partial p'}{\partial x}$ $\frac{\partial \rho w}{\partial t} = -\frac{\partial \rho u w}{\partial x} - \frac{\partial \rho w w}{\partial z} - \frac{\partial p'}{\partial z} - \rho' g$ $\frac{\partial \rho e}{\partial t} = -\frac{\partial \rho u h}{\partial x} - \frac{\partial \rho w h}{\partial z} + u \frac{\partial p'}{\partial x} + w \frac{\partial p'}{\partial z} + w \frac{\partial p_s}{\partial z}$
Boundary conditions	Upwind difference	Velocities is set to zero at sides of a scalar cell.

2. Model description

Discretization

Time integration	RK3 (Williamson 1980)
Spatial difference	Second order central difference scheme
Grid system	C-grid / Lorentz-grid

3. Thin-wall approximation

Boundary conditions

 Thin walls are defined at side of a cell for each variable.

 \rightarrow It is necessary to handle all thin walls depending on a location relative to the surface.

The following conditions are imposed.

$$u_{i-1/2,k} = 0 \quad if \quad (F_z)_{i-1/2,k} = \frac{(dz')_{i-1/2,k}}{dz} = 0$$
$$w_{i,k-1/2} = 0 \quad if \quad (F_x)_{i,k-1/2} = \frac{(dx')_{i,k-1/2}}{dx} = 0$$

The velocity is set to zero if the side face of a cell defined scalar quantity is consists of thin wall only.

Boundary conditions

 Thin walls are defined at side of a cell for each variable.

→ It is necessary to handle all thin walls depending on a location relative to the surface.

The following conditions are imposed.

$$u_{i-1/2,k} = 0 \quad if \quad (F_z)_{i-1/2,k} = \frac{(dz')_{i-1/2,k}}{dz} = 0$$
$$w_{i,k-1/2} = 0 \quad if \quad (F_x)_{i,k-1/2} = \frac{(dx')_{i,k-1/2}}{dx} = 0$$

The velocity is set to zero if the side face of a cell defined scalar quantity is consists of thin wall only.

Boundary conditions

 Thin walls are defined at side of a cell for each variable.

 \rightarrow It is necessary to handle all thin walls depending on a location relative to the surface.

The following conditions are imposed.

$$u_{i-1/2,k} = 0 \quad if \quad (F_z)_{i-1/2,k} = \frac{(dz')_{i-1/2,k}}{dz} = 0$$
$$w_{i,k-1/2} = 0 \quad if \quad (F_x)_{i,k-1/2} = \frac{(dx')_{i,k-1/2}}{dx} = 0$$

The velocity is set to zero if the side face of a cell defined scalar quantity is consists of thin wall only.

4. Mountain wave experiments

Setup

Domain	4000 [km] × 20 [km]
Resolution	2 [km] × 100 [m]
Time step	Δt = 0.25 [s]
Boundary condition	Free slip / Periodic

- $z(x) = \frac{h_t a}{x^2 + a^2} \qquad a : \text{ Half width of the mountain (= 10 [km])} \\ h_t : \text{ Height of the mountain}$
- Sponge layer above 15 [km] height
- 4th order numerical diffusion

The mountain image created from a thin-wall approximation

 $\frac{Nh_t}{U}$: Scorer number (The index of nonlinearity of the mountain waves)

case A: The height of mountain top is 10m

case B: the height of mountain top is 400m

A: 10m mountain

 $\frac{Nh_t}{M_t} = 0.01$

Vertical transport of horizontal momentum flux

$$MODEL: \rho(z) \sum u'w' \Delta x$$

Linear theory :
$$\frac{\pi}{4}\rho_0 NUh$$

- The momentum flux in our model is nearly unity.
- ✓ It agrees well with that of the linear theoretical value

After 12 hours

Horizontal momentum flux budget analysis

B: 400m mountain

B: 400m mountain

MODEL :
$$\rho(z) \sum u'w' \Delta x$$

Linear theory :
$$\frac{\pi}{4}\rho_0 NUh$$

- Nonlinear behavior appears for the result after 10 hours.
- The momentum fluxes are transported toward the upper layer.

1.0

0.0

O•••After 5 hours

B: 400m mountain

Horizontal momentum flux budget analysis

5. Summary

- ✓ The representation of topography by a thin-wall approximation is implemented to fully compressible flux-form equations.
- ✓ This method addresses the effect of the mountain which height is less than a vertical grid interval.
- ✓ The momentum fluxes are transported toward the upper.
- ✓ The conservation of horizontal momentum flux is confirmed.
- The future work is to implement a turbulence scheme to this model.