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1. Background

v" In higher resolution models (< 10km), the

detailed topographical data is required. Basic terrain-following
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and lower boundary conditions are imposed. T
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. The terrain-following coordinate
numerlca”y unstable. representation of a topography

» We focus on the alternatives to the terrain-following approach.



Other representations

v" Cut cell method

— This method satisfies a conservation law

using a finite-volume method. o =
— Small cell problem occurs. /
v Thin-wall approximation /1111177777 17TT77 777777777
— The assumption that volume of cells Cut cell method

intersected by the surface remains a full
atmospheric cell.

— The parts under topography is represented
by thin walls.

— Advection-form equations are used in
pervious works such as

Steppeler et al. (2002, 2006, 2011),

Lock (2008), Lock et al. (2012). Thin-wall approximation



Purposes

v To implement the representation of topography by the thin-
wall approximation to fully compressible flux-form equations.

v’ To confirm the conservation of momentum flux.

Steppeler et al. (2002) Our approach
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2. Model description

Equations (Satoh 2002)
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Discretization

kel---- -Ok{)A(:}k -
P W

koemen OAQ-AOA— -
k=172 4 * *

S QkOA-O—k .
k=312 A + +

i_ll i-1/2 ll 1/2 i-:-l i+3/2
0O p.pe A - PU A e W

Time integration

RK3 (Williamson 1980)

Spatial difference

Second order central difference scheme

Grid system C-grid / Lorentz-grid




3. Thin-wall approximation

[ dZ’: the part of grid that
F = appears above the surface]
¢ [ dz : total vertical grid interval |
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Boundary conditions

v" Thin walls are defined at side of a cell
for each variable.

— It is necessary to handle all thin walls
depending on a location relative to the

surface.

The following conditions are imposed.
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The velocity is set to zero if the side face of a cell defined scalar
guantity is consists of thin wall only.



Boundary conditions

v" Thin walls are defined at side of a cell A A ‘
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The velocity is set to zero if the side face of a cell defined scalar
guantity is consists of thin wall only.



Boundary conditions
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4. Mountain wave experiments
Setup

Domain 4000 [km] x 20 [km]
Resolution 2 [km] x 100 [m]
Time step At =0.25 [s]
Boundary condition | Free slip / Periodic

Initial values
z (x) N =0.01

U=10[m/s] —> > p, = 1000 [hPa]
- g I / T,=300 [K]

h.a a : Half width of the mountain (= 10 [km])

x*+a®> h : Height of the mountain

72(x) =

e Sponge layer above 15 [km] height
« At order numerical diffusion




The mountain image created from a thin-wall approximation
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A: 10m mountain
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Vertical transport of horizontal momentum flux

After 12 hours
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A: 10m mountain

Horizontal momentum flux budget analysis
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B: 400m mountain

Our model
After 5 h
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B: 400m mountain A
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Vertical transport of horizontal momentum flux

o= = =After 5 hours
o=+ After 10 hours
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v Nonlinear behavior appears for
the result after 10 hours.

v" The momentum fluxes are
transported toward the upper
layer. 1
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B: 400m mountain

Horizontal momentum flux budget analysis
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5. Summary

v The representation of topography by a thin-wall approximation
is implemented to fully compressible flux-form equations.

v This method addresses the effect of the mountain which height
is less than a vertical grid interval.

v' The momentum fluxes are transported toward the upper.
v The conservation of horizontal momentum flux is confirmed.

v The future work is to implement a turbulence scheme to this
model.



