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Motivation: atmospheric mesoscale extremes

High-Impact Weather � Bonn 5 June 2011

5 June 2011
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I Figure (P. Friederichs): 66-68 mm precipitation within 2 hours
in Bonn ⇒ How do we forecast this?

I Central aim Wex-Mop: Towards a next-generation mesoscale
prediction system for extreme weather

I Hypothesis: Conserved quantities like PV play a role in
extremes
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Potential Vorticity

De�nition Potential Vorticity (Ertel 1942)

Π ≡
( ωr + 2Ω )

ρ
· ∇θ

Terms

I 2Ω ⇒ Planetary vorticity (earth rotation)

I ωr ≡ ∇× u ⇒ Relative vorticity (rotation relative to earth)

I ∇θ ⇒ Gradient of potential temperature (entropy)

I Dynamic (rotation of wind �eld) and thermodynamic information

I Conserved for adiabatic, frictionless �ow ( dΠ
dt

= 0)

I On (convective) mesoscale investigations relatively new
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Π evolution

Haynes & McIntyre (1987)

∂ρΠ
∂t +∇ · ( ρΠu − θ̇ζa − F×∇θ ) = 0

I Local change Π

I Change of Π by advection

I Change of Π by diabatic e�ects

I F: applied force per unit volume, e.g. friction

I Since it is in divergence form, friction and diabatic e�ects only
create Π at the boundaries
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Raymond et. al. [1990] & Chagnon et. al. [2009]

I Π dipoles by heating e�ects, dρΠ
dt

= ζa · ∇(θ̇)
I Main component vorticity: ζa ≈ k× S, with S the wind shear

I Maximum θ̇ at about 5km

I Horizontal dipoles with Π values up to 50*Π at storm cell,
proportional to strength updraft and wind shear
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Figure: Schematic of dipole generation of storm updraft. (red: positive Π
anomaly, blue: negative Π anomaly)



Aims & goals Theory Data/methodology Results Conclusion/Outline

Lift induced by dipoles?

I On large scales, Π anomalies
'induce' vertical motion

I Positive (negative) w
induced down�ow (up�ow)
of positive Π anomaly

I Banded structures of Π? ⇒
Balanced �ow around
dipoles?

I Classical: new cells
generated downshear

I Positive anomaly advected
to updraft if streamwise
vorticity exists

I Hypothesis: PV bands
slightly tilted right of S

Figure: Balanced �ow at PV anomalies,
source: Hoskins[1997]
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Figure: Schematic overview lift induced
by dipoles
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Methodology

Central question: Are there any
structured PV bands and how
consistent are they?
Hypothesis: PV bands, direction
dependent on wind shear

Methodology:

1. Composites of storm
updrafts: mean �elds around
a vertical velocity maxima
above certain threshold (5
m/s).

2. Anisotropic spectrum:
spectral energy for speci�c
wave number and direction.

Figure: Calculation of energy for
speci�c direction and scale
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Data used
I COSMO-DE: nonhydrostatic weather model, centred over

Germany, resolution 2.8 km
I EPS system used: 20 ensemble members
I Two cases to test hypothesis: 05-06 (local convection) and

22-06 (convection along cold front)

Figure: COSMO-DE-EPS, 20 ensemble members out of 4 di�erent b.c.
and 5 physical perturbations. Source: DWD (Theis et al: Beschreibung des
COSMO-DE-EPS und seiner Ausgabe in die Datenbanken des DWD.)
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Π dipoles 05-06: no alignment

Figure: Π and wind speed at ≈ 3km for
05-06-16h UTC

Figure: θ at ≈ 3km and precipitation
for 05-06-16h UTC
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Π dipoles 22-06: coherent alignment

Figure: Π and wind speed at level 30 for
22-06-14h UTC

Figure: θ at level 30 and precipitation
for 22-06-14h UTC
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Composites

I Average Π, u, etc. around (50x50 km) a storm updraft

I Height integrated (3-7.5km) PV, vertical velocity and 0-6 km
wind di�erence (vectors)

I Mean value subtracted to get perturbed �elds

I Clear Π anomalies, consistent with direction wind shear
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Composites

I Clear anomalies for helicity and the dynamical state index
(which measures deviation from stationary, adiabatic
atmosphere)

I Flow around positive anomaly anticyclonic, so at least
quasi-balanced
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Composites

I Longitudinal cross section, PV dipoles visible over large part of
atmosphere

I Maximum values at about 5-6 km.

I Updraft slightly tilted to the east with height for 22-06
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Anisotropic measure

I Fraction of energy in speci�c direction on convective scale
(16-44 km)

I Prefered direction slightly to the right of wind shear?
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Conclusion/Outlook

I Π conserved in COSMO-DE model (not shown)

I Organisation of storm cell structures can be explained with PV
thinking

I Dipoles quasi-balanced, adjustment?

I Composites show that dipoles are consistent in strength and
direction

I Possible use: predictor for severe weather like (convective)
precipitation and wind gusts?
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Choice threshold composites

I Only interested in convective
cells

I Non-zero DSI expected (since it
is the deviation from adiabatic,
stationary atmosphere)

I Threshold of 3 m/s or more will
work
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Figure: Height (3-7.5km) averaged w

agains |DSI | for 22-06 17h UTC
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