Developing the high resolution sea ice forecasting system HAMMER based on regional atmosphere, sea ice and ocean models

B. H. Focka, A. Gierischa, M. Dobryninb, K. H. Schlünzena, T. Pohlmannb

A. Beitschb, D. Bröhanb, L. Kaleschkeb

H. Bockelmannc

10th SRNWP-Workshop, Offenbach, 2013-05-13
IRO-2: Project team and funding

- 6+1 Project partner
- Team @UHH: MI + IfM
- BMWi 2011-09 / 2014-09
- National Masterplan for Maritime Technologies
IRO-2: Mission statement

- **Goals**
 - Safe and economic Arctic shipping => Ship routing based on current and forecasted sea ice conditions
 - Responsible operation of platforms => Forecasts for offshore industry
 - Arctic engineering and product design => Virtual reality for ship design, classification, insurance ...

- **Methods**
 - Remote sensing of sea ice
 - Atmosphere/sea-ice/ocean - models
 - Ship speed impact model

IRO-2: Practical questions of end users

- Best route form A to B?
- Required ice class of ship?
- Estimated travel speed and fuel consumption?
- Risks for crews, charter schedule, environment?
Developing the sea ice prediction system

HAMMER Björn Hendrik et al.

MARITIME END USER
ARCTIS WIDE ICE/OCEAN MODEL DATA ASSIMILATION
REGIONAL SEA ICE ATMOSPHERE OCEAN MODEL
SHIP ROUTE OPTIMIZATION
MARITIME END USER
Developing the sea ice prediction system

HAMMER

Björn Hendrik Fock et al.

www.iro-2.de
Developing the sea ice prediction system

HAMMER Björn Hendrik Fock et al.

- ARCTIS WIDE ICE/OCEAN MODEL DATA ASSIMILATION
- GLOBALE WX FORECAST
- REMOTE SENSING
- SHIP ROUTE OPTIMIZATION
- MARITIME END USER

MARITIME END USER

ARCTIS WIDE ICE/OCEAN MODEL DATA ASSIMILATION

GLOBALE WX FORECAST

REMOTE SENSING
Developing the sea ice prediction system

HAMMER Björn Hendrik et al.

www.iro-2.de

MARITIME END USER

ARCTIS WIDE ICE/OCEAN MODEL DATA ASSIMILATION

REGIONAL SEA ICE ATMOSPHERE OCEAN MODEL

GLOBALE WX FORECAST

REMOTE SENSING

MARITIME END USER
Developing the sea ice prediction system

HAMMER Björn Hendrik Fock et al.

GLOBALE WX FORECAST → ARCTIS WIDE ICE/OCEAN MODEL DATA ASSIMILATION → REMOTE SENSING

REGIONAL SEA ICE ATMOSPHERE OCEAN MODEL

SHIP ROUTE OPTIMIZATION
Modelling @ UHH

- Regional IRO-2 model setup in short
 - Test region Barents sea
 - 8.300 x 11.250 km
 - \(dx = 5 \) km
 - Few days forecasts
 - Running on one IBM Power 6 node
 - Atmospheric forcing ECMWF HRES
 - Sea ice initial conditions from satellite
 - Additional boundary conditions from ICEDAS/NAOSIM
 - Coupling regional models for sea ice - atmosphere - ocean

HAMMER: “Hamburger System für mesoskalige Eisvorhersage zur Routenoptimierung”
HAMMER MODEL COMPONENTS

- METRAS - atmosphere
 - Anelastic, Boussinesq approximated non-hydrostatic atmospheric model
 - Terrain following coordinates
 - Subgrid scale land use
 - Developed at MI UHH based on Schlünzen (1988)

- MESIM – sea ice
 - ...

- HAMSOM – ocean
 -
HAMMER MODEL COMPONENTS

- METRAS - atmosphere
 - ...

- MESIM – sea ice
 - Multiclass sea ice physics
 - Multilayer thermodynamics
 - Advection scheme with low diffusion
 - Directly coupled to atmospheric model METRAS
 - Originally ported from an AWI sea ice model (Birnbaum, 1988), since then under development at MI UHH

- HAMSOM - ocean
 - ...

Developing the sea ice prediction system HAMMER
HAMMER MODEL COMPONENTS

- METRAS – atmosphere
 - ...

- MESIM – sea ice
 - ...

- HAMSOM – ocean
 - Shelf ocean model based on primitive equations
 - Free surface including equations for temperature and salinity (Pohlmann, 1996)
 - Z coordinates, regular lon/lat grid
 - Developed at IfM UHH based on Backhaus (1985)
IRO-2 Validation Experiment - 2014-03

- Ship based measurements
 - 10 days test of forecast and routing system on board of an ICE-1A ship in first year ice
 - Collecting ice, ocean, atmosphere and ship data

- Buoy based measurements (CliSAP funding)
 - Approx. 16 buoys to measure ice drift
 - Airplane based deployment in target region

- Forecast experiment
 - Operational forecast of sea ice and route conditions
 - Broadcasting to ship including back communication of route planning

Observation 1970-2011
www.ncdc.noaa.gov/cdo-web

SMOS 2011-04-01
Development of regional model HAMMER

- Reviewed and improved physics
 - Improved use of remote sensing data
 - Coupling to ocean (e.g. to get tide influence)
 - Checking sensitivity / required processes

- Faster numerics
 - ...

- Technology and model system
 - ...
Development of regional model HAMMER

- Reviewed and improved physics
 - ...

- Faster numerics
 - Pressure solver rewritten by DKRZ
 - Process time-split (cloud physics, sea ice, turbulence)

- Technology and model system
 - ...

\[t_{\text{ice}} \quad t_{\text{full}} \quad t_{\text{liq}} \quad t_{\text{ice}} \quad t_{\text{full}} \quad t_{\text{liq}} \quad t_{\text{ice}} \quad t_{\text{full}} \quad t_{\text{liq}} \]
Development of regional model HAMMER

- Reviewed and improved physics
 - ...
- Faster numerics
 - ...
- Technology and model system
 - Embedding in IRO-2 Dataflow
 - Development of new operational run suite, useful: https://software.ecmwf.int/ecflow
 - Increase model speed, useful: SCalesTimer Lib https://redmine.dkrz.de/doc/sct/html/
Model setup: Sea ice initialization

Sea ice thickness – SMOS
- 1.4 GHz allows to detect the ocean-ice interface for not too thick ice
- Brightness temperature related to sea ice thickness up to 0.5 m
- Daily coverage with 35 km resolution
- Number of interference sources decreasing
- Data at http://icdc.zmaw.de/smosice.html

Sea ice Concentration – AMSR2
- Current re-forecast tests with SSMIS (dx = 12 km)
- Updating to AMSR2 / AMSR-E (dx = 3.125 km, 4-5 km footprint)

Model setup: Sea ice initialization

- **Sea ice thickness – SMOS**
 - 1.4 GHz allows to detect the ocean-ice interface for not too thick ice
 - Brightness temperature related to sea ice thickness up to 0.5 m
 - Daily coverage with 35 km resolution
 - Number of interference sources decreasing
 - Data at http://icdc.zmaw.de/smosice.html

- **Sea ice Concentration – AMSR2**
 - Current re-forecast tests with SSMIS (dx = 12 km)
 - Updating to AMSR2 / AMSR-E (dx = 3.125 km, 4-5 km footprint)

Model setup: Sea ice initialization

Sea ice thickness – SMOS
- 1.4 GHz allows to detect the ocean-ice interface for not too thick ice
- Brightness temperature related to sea ice thickness up to 0.5 m
- Daily coverage with 35 km resolution
- Number of interference sources decreasing
- Data at http://icdc.zmaw.de/smosice.html

Sea ice Concentration – AMSR2
- Current re-forecast tests with SSMIS (dx = 12 km)
- Updating to AMSR2 / AMSR-E (dx = 3.125 km, 4-5 km footprint)

Sea ice concentration: simulation vs. observation

Satellite 2011-04-03

Model 2011-04-03 08:00

S(2011-04-03) - S(2011-04-01)

M(2011-04-03 08:00) - M(2011-04-01 08:00)
Motion of vessels in ice covered waters

- Data needed from models
 - Weather conditions
 - Sea ice thickness
 - Sea ice concentration
 - Ridges and Leads (sub grid scale)
 - Near surface currents
Known challenges and limits

- Challenges we try to target ourselves
 - Speed to improve possible resolution / domain size / forecast length
 - Robustness and validation of model system
 - Improvement of physical features

- Limitations currently out of our control
 - Limited band width for data transfer to high latitudes
 - Only few observations in the Arctic
 - Dependence on driving models
Summary

- Development HAMMER
 - Regional model based on METRAS, MESIM & HAMSOM
 - Prototype as component for maritime decision support system
 - Main focus on system development by including

- IRO-2
 - Remote sensing of sea ice
 - Arctic wide sea ice / ocean data assimilation
 - Regional atmosphere / sea ice / ocean modeling
 - Ship specific impact model
 - Validation experiment in 2014-03
Discussion on regional sea ice / atmosphere modelling

- Ideas
- Comments
- Questions