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Case-study results using MPAS variable-resolution meshes in hydrostatic
. ) . . . regimes (Ax > 10 km) are good: resolution-appropriate structure, no obvious
(1) Motivation: variable-resolution meshes in MPAS problems in the mesh transition regions.
(2) Parameterization philosophy and deep convection
(3) Current practice Global MPAS nonhydrostatic-scale simulations (Ax ~ 3 km) produce structure

similar to regional models (WRF) run at the same resolutions.

(4) Preliminary Global MPAS results

Question: How do we configure MPAS to run on variable-resolution meshes
that span nonhydrostatic [Ax ~ O(1 km)] to hydrostatic [Ax > O(10 km)] scales?
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(2) Parameterization philosophy and deep convection

Resolved-scale effects of any unresolved structures need to be parameterized.
Resolved: Accurately represented by the model in its time-space discretization.
Deep convection: Cell updraft diameters are O(1) km (largest supercells d < 10
b@ép convection: entraining eddies in updrafts are O(100) m.
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Resolved scales > 6-8 A; cutoff 2A

Strict parameterization: All convective
cells must be completely parameterized
on meshes with A >= O(km)

MPAS (A >= 10km) uses a formal
convective parameterization.

MPAS (3km) uses no formal convective
parameterization, but convective cells
exist in the 2A to 6-8 A scales.
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(3) Deep convection - current practice

Meshes with A ~ a few kilometers

Most models do not use deep convection parameterizations with A ~ a few kms

Weisman et al (1997): Without convection parameterization, mesh spacings
“of 4 km are sufficient to reproduce much of the mesoscale structure and
evolution of the squall-line-type convective systems ...”

w o — 1214 km . Using no parameterization is a parameterization:

Allowing explicitly-simulated unphysically-large
laminar plumes to accomplish the effects of
unresolved deep convection on the resolved-scale
flow is our parameterization.

This is not a theoretically justifiable
parameterization approach.

It generally works better than other
deep convection parameterizations.
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(3) Deep convection - current practice

Meshes with A greater than a few kilometers

Hydrostatic regime: A > O(10 km)

No real consensus exists!
*Mass-flux schemes
*Adjustment schemes
*Use of no deep convection scheme, for example
NICAM: 15 and 7.5 km meshes
GFDL: 25 and 50(!) km meshes
UKMO PRACE-UPSCALE project: 12 km meshes
positives: diurnal precip cycle, conv. system propagation (e.g. MJO)
negatives: not generally discussed

Hydrostatic-nonhydrostatic transition: O(10 km) > A > O(few km)

Consensus(?): Explicit deep-convection parameterization should do very
little at A ~ O(few km) because the “no-parameterization” approach
works better than any existing parameterization at that scale.

(4) Preliminary Global MPAS results
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(4) Preliminary Global MPAS results

15 km global MPAS simulation using the Tiedtke convection scheme
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(4) Preliminary Global MPAS results

15-25 January 2008 simulation
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(4) Preliminary Global MPAS results
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(4) Preliminary Global MPAS results

4 day 17 h forecasts
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(4) Preliminary Global MPAS results

4 day 17 h forecasts

Summary

Initial experiments with global MPAS at meshes spanning
nonhydrostatic-hydrostatic scales confirms:

*All approaches to treating convection have problems.

*Explicit convection at hydrostatic scales is too slow/late to
develop.

*Parameterized convection peaks too early, close to local noon
(maximum heating).

«Explicit tropical convective-system structure is poor on meshes
with A > 2-4 km.

*MPAS results are similar to regional nonhydrostatic models
(e.g. WRF) at all resolutions.

Additionally:

*MPAS (WRF) versions of Tiedtke and KF schemes remain active at
high mesh density (e.g. 7.5 and 3 km).

Future:

Test various approaches to reducing the convective scheme
forcing at nonhydrostatic-scale resolutions.

Initial MPAS release next month (June 2013)
see http://mpas-dev.github.io/
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4 day 17 h forecasts
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