
10th International SRNWP Workshop on Nonhydrostatic Modelling, 13-15 May 2013, Offenbach am Main, Germany 

Implementation of a TKE-Scalar Variance 

Mixing Scheme into the COSMO Model 

Dmitrii Mironov and Ekaterina Machulskaya  

German Weather Service, Offenbach am Main, Germany  

(dmitrii.mironov@dwd.de, ekaterina.machulskaya@dwd.de) 

15 May 2013 



10th International SRNWP Workshop on Nonhydrostatic Modelling, 13-15 May 2013, Offenbach am Main, Germany 

 Motivation  

 Formulation of the TKE-Scalar Variance scheme 
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 Implementation into the COSMO model 

 Future challenges  

Outline 



Motivation 

Quoting Arakawa (2004, The Cumulus Parameterization Problem: Past, Present, 

and Future. J. Climate, 17, 2493-2525), where, among other things,  

“Major practical and conceptual problems in the conventional 

approach of cumulus parameterization, which include artificial 

separations of processes and scales, are  discussed.”   

 

“It is rather obvious that for future climate models the 

scope of the problem must be drastically expanded from 

“cumulus parameterization” to “unified cloud 

parameterization” or even to “unified model physics”. 

This is an extremely challenging task, both intellectually 

and computationally, and the use of multiple approaches 

is crucial even for a moderate success.”  



Motivation (cont’d) 

The tasks of developing a “unified cloud parameterization” 

and eventually a “unified model physics” seem to be too 

ambitious, at least at the moment. 
 

However, a unified description of turbulence and 

boundary-layer convection seems to be feasible.  
 

There are several ways to do so (see Mironov 2009, for a 

detailed discussion). A viable option for high-resolution 

NWP is a non-local mixing scheme incl. mass-flux 

parameterization ideas “translated” into the language of 

second-order closures (see DM, EM & P. Sullivan 

presentation at the 8th SRNWP Workshop, Bad Orb, 2009).  



 Key features  

• prognostic treatment of TKE and of scalar 

variances with due regard for the third-order 

transport (+ diagnostic relations for scalar fluxes 

and Reynolds stress) 

• account for non-local, skewed nature of 

convective motions  

• account for turbulence anisotropy (via advanced 

parameterizations of pressure scrambling effects)  

• intimate coupling with statistical cloud scheme  

TKE-Scalar Variance (TKESV) Scheme 



   

TKE and Scalar Variances Have Equal Rights 
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Prognostic equations for <ui’
2> (kinetic energy of SGS motions) 

and for <l’
2>, <qt’

2>, <qt’l’> (potential energy of SGS motions) 

including third-order transport  

Convection/stable stratification =  

Potential Energy  Kinetic Energy  

No reason to prefer one form of energy over the other! 
 

A scalar-variance equation   

Terms underlined red are ignored within the framework 

of one-equation TKE schemes.  

non-stationarity non-homogeneity 



TKESV vs. One-Equation TKE Scheme 
(Draft Horse of Geophysical Turbulence Modelling)  

Equation for <’2>   
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Production = Dissipation (implicit in all models that carry the TKE 

equations only)  

Equation for <w’’>   
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No way to get counter-gradient scalar fluxes in convective flows 

unless third-order scalar-variance transport is included (cf. turbulence 

schemes using “counter-gradient corrections” heuristically).  



In Terms of Popular Mellor-Yamada Hierarchy 

of Second-Order Closures… 

The hierarchy is based on the departure from isotropy considerations.  

Level 2: all second moments are computed algebraically (production-

destruction equilibrium, assuming steady-state and homogeneity) 

Level 3: TKE and scalar variances are computed prognostically (non-

stationarity) with due regard for third-order transport terms (non-

homogeneity); all other second moments algebraically 

Level 4: all second moments are computed prognostically  

 

Level 2.5: TKE computed prognostically and all other second 

moments algebraically. Level 2.5 is an inconsistent artificial construct 

that cannot be derived from departure-from-isotropy considerations! 

(cf. original Mellor and Yamada, 1974, paper) 
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In Terms of Mellor-Yamada Hierarchy (cont’d) 



Accounts for non-local transport due to coherent structures 

(convective plumes or rolls) – mass-flux ideas!  
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Skewness-Dependent Parameterization of 

Third-Order Transport 

Down-gradient term  

(diffusion)  Non-gradient term  

(advection)  



Mass-Flux Approach 

A top-hat representation of a fluctuating quantity (two-δ-function PDF)   

After M. Köhler (2005) 

Updraught 

Downdraught 

(environment)    

Only coherent 

top-hat part of 

the signal is 

accounted for  



Mass-Flux Formulation in Terms of SOC 
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Skewness of two-δ-function PDF (a is the updraught fractional area)  

S tends to  (-) as a tends to 0 (1). Then    

The mass-flux formulation  

recast in terms of the ensemble-mean quantities! 
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As the resolution is refined, the SGS motions are 

(expected to be) increasingly Gaussian.  

Then, S  0 and the parameterization of the third-

order transport term reduces to the down-gradient 

diffusion approximation.   
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Sensitivity to Filter Scale (Resolution)   



Energy density spectrum     

ln(E) 

ln(k) -1 

Resolved scales 
 

(-1 is effectively 
 a mesh size) 

Chaotic, nearly Gaussian   

(down-gradient diffusion 

approximation)  

Quasi-organized,  

strongly non-Gaussian   

(mass-flux approximation  

in terms of skewness)  

Sub-grid  scales 

Viscous  

dissipation 

-1 

Cut-off  

at high resolution 

Sensitivity to Filter Scale (Resolution)   



In order to determine skewness, we make use of the transport 

equation for the potential-temperature triple correlation  

Using the mass-flux ideas, the fourth-order moment is closed through 

the temperature skewness (Gryanik and Hartmann  2002) – no need for 

equations of higher order!  
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Closure for Skewness  



   

θ 

z 

small TKE large TKE 

Turbulence Anisotropy 

turbulence is  

anisotropic 

TKE changes, but  

turbulence remains isotropic 

bulk of CBL: 

inversion: 

≈ 1D 

≈ 2D 

2w

2v

2u

Much effort went into improving the treatment of TKE, but the Devil sits in the 

pressure terms in the (algebraic) equations for fluxes.  



Most statistical cloud schemes use at least two moments of 

distribution of l and qt.  For Gaussian cloud scheme, for example, 

the only predictor is the normalized saturation deficit that combines 

mean and variance.  
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A more accurate estimate of 

σs provided by a mixing 

scheme will (hopefully) lead 

to a better cloud forecast.   

Coupling with Statistical Cloud Scheme 



  

Single Column Tests (summary) 

• TKESV scheme is favourably tested through 

single-column numerical experiments 

(outperforms one-equation TKE scheme)  

• Dry PBL: enhanced mixing, up-gradient heat 

transfer  

• Cloudy PBLs (shallow cumuli, stratocumuli): 

better prediction of scalar variances and TKE, 

slight improvements with respect to the vertical 

buoyancy flux and the mean temperature and 

humidity   



   

Potential temperature minus 
its minimum value within the 
PBL. Black dotted curve 
shows LES data (Mironov et 
al. 2000), red – TKE scheme, 
blue – TKESV scheme. 

Mean Temperature  

  

 TKE and TKESV Schemes  

vs. LES Data  

Dry Convective PBL 

Enhanced mixing, counter-gradient heat transfer   



   

Dry Convective PBL (cont’d) 

TKE (left panel) and <’2> (right panel) made dimensionless with w*
2 and *

2, 

respectively Black dotted curves show LES data, red – one-equation scheme, 

blue – two-equation scheme.  



   

Shallow Cumulus Topped PBL 

Potential temperature variance (two left panels) and total water variance (two right 

panels) in BOMEX. Red – TKE scheme, blue – TKESV scheme. Black solid 

curves in the middle figures show LES data.  



TKESV Scheme within COSMO 

• Prognostic equations for <ui’
2> and for <l’

2> , 

<qt’
2> and <l’qt’> including third-order transport   

• Algebraic (diagnostic) formulations for scalar 

fluxes and Reynolds-stress components with due 

regard for anisotropy and for turbulence length 

scale (stability dependent)  

• Statistical SGS cloud scheme, either Gaussian or 

skewed (ad hoc correction)   

• Optionally, prognostic equation for scalar skewness  



COSMO-DE, July – September 2011 

2m temperature 2m dew point depression 

Bias Bias RMSE RMSE 

Experiment vs. Operational 

TKESV vs. COSMO Oper 
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Conclusions 

A TKE-Scalar Variance (TKESV) mixing scheme is 
developed and favourably tested through single-column 
numerical experiments  

 The TKESV scheme is implemented into the limited-
area NWP model COSMO, results from parallel 
experiments look promising (improvements as to the 2m 
temperature and humidity and, to a lesser extent, to the 
fractional cloud cover)  

 Implementation into the global NWP model ICON is 
planned  

Documentation of the TKESV scheme is in preparation 
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 Development of a three-moment (mean, variance, and 

skewness) statistical SGS cloud scheme that accounts 

for non-Gaussian effects, (A. Seifert and A. K. 

Naumann, HErZ on Cloud and Convection, Hamburg). 

Work is basically done.  

Coupling the skewness equations with the three-

moment statistical cloud scheme.  

Skewness-dependent “diffusion+advection” parameterizations of the third-

order moments in the scalar-variance equations are developed and tested  

(optional within the TKESV scheme). These are, however, not recommended 

for the immediate use within COSMO due to numerical stability problems.  

Future Challenges  
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Future Challenges  

 Improved coupling of the scalar-variance equations to the 
tiled surface scheme to better account for the effect of 
surface heterogeneity on the PBL structure and mixing  
(Mironov and Sullivan 2010, further co-operative work 
with Peter Sullivan, NCAR), use of PBL scalar variances 
in stochastic parameterizations.  

 

Efforts go into the analysis of various flow regimes over 
heterogeneous surfaces (e.g. temperature-heterogeneous flat surface 
versus temperature-homogeneous surface with orographic features), 
and into the formulation of the surface boundary conditions for the 
scalar variances with due regard for the surface heterogeneity.  
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Supplementary Material  



   

Truncated (algebraic) equation for the scalar flux    
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Key Point: Modelling Pressure Redistribution  

(Scrambling) Terms in the Flux Budgets 

From the Poisson equation 

Like terms can be collected → linear model. However…  



   

Near the wall or inversion: 

C
b = const leads to a spurious generation of scalar (e.g. heat) flux! 

Actually, C
b is a (complex) function of the governing parameters of 

the problem (departure-from-isotropy tensor, scalar flux vector, 

etc.).  

C
b = const is not acceptable in case of stable stratification. C

b must 

approach 1 as w’0 (turbulence approaches a two-component 

limit). 

In the TKESV scheme (Level 3) C
b can be made a linear function 

of anisotropy tensor without making the system of algebraic 

equations for fluxes non-linear. 

Realizability Constraints in Anisotropic Limits 
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after Tompkins (2002) 

SGS fluctuations of q 

and qs (due to SGS 

fluctuations of T) result 

in fractional cloud 

cover  

clouds 

Coupling with Statistical Cloud Scheme 

cloud cover, cloud condensate =  

integrals over supersaturated part of PDF 

If a family of PDF is assumed, the only 

problem is to determine its parameters.  



For shallow cumulus regime (highly localized motions), the Gaussian 

distribution does not works well. Skewness is very important! 

A three-moment (mean, variance, and skewness) statistical SGS cloud 

scheme that is based on the double Gaussian distribution and accounts 

for non-Gaussian effects (c/o Axel Seifert and Ann Kristin Naumann, 

Hans Ertel Centre on Cloud and Convection (HErZ), Hamburg) is 

developed. 

Coupling with Statistical Cloud Scheme 

(Golaz et al., 2002) 

Scalar variances and scalar 

skewness computed by the 

TKESV scheme are used as an 

input to the cloud scheme. 



  

Remaining Problems and Future Challenges  

 Skewness-dependent “diffusion + advection” parameterizations 

of the third-order moments in the scalar-variance equations  

• The skewness-dependent parameterizations are developed, tested 

through single-column experiments, and are available as an option 

within the TKESV scheme. These parameterizations reduce 

numerical stability of the entire scheme (smaller time step is 

required) and are not recommended for immediate implementation 

into COSMO (cf. three-moment SGS cloud scheme).  

 

 Coupling with the three-moment statistical cloud scheme 

• Further development and comprehensive testing of transport 

equations for the skewness of scalar quantities, coupling the 

skewness equations with the three-moment statistical cloud scheme.  



  

Remaining Problems and Future Challenges  

Regularization of the pathological behaviour of stability functions 

in non-stationary conditions (growing turbulence) 

The problem is well-known and is recognized to be associated with 

the truncation of equations (neglecting of the terms that are 

responsible for inhomogeneity and non-stationarity). 

The ways to handle it: either to regularize the solution (widely used, 

but too crude) or to regularize the equations (more mild and model-

friendly). 

The idea (Helfand & Labraga, 1988) is to re-insert into the algebraic 

equations the “transport” terms that would emulate what was 

neglected by the truncation. 

In the Level 3 model, there is a possibility to do it in a more intelligent 

way because of an additional degree of freedom (scalar variance). 



  

Remaining Problems and Future Challenges  

Last but not least… 

Regularization of the pathological behaviour of stability functions: 

what is “pathological”? 

The answer can be formulated in terms of realizability of a model: 

a model is realizable if there exists a probability distribution with a 

given sequence of statistical moments predicted by the model (du 

Vachat, 1977). (In mathematics, it is referred as to moments problem.) 

Example: criterium for the existence of PDF in the case of one fluctuating variable:  

given the sequence of the moments mk,  

the matrix H, where Hij = mi+j, i+j=k, must be positive semi-definite. 

(Non-negativity of variance follows from this more general condition.) 

The requirement of realizability impose constraints on the moments. 

→ “pathology” may be strictly defined 



   

… 



COSMO-DE, July – September 2011 

Low clouds 

Precipitation 

TKESV vs. COSMO Oper 



COSMO-DE, 1 June – 31 July 2012 

2m temperature 

Low clouds 

TKESV vs. COSMO Oper 



T2m: OBS-ROU T2m: EXP-ROU 

TKESV vs. COSMO Oper 

Low clouds 

COSMO-DE, 22 August 2011 



COSMO-DE, 22 August 2011 

Low clouds 

T2m: OBS-ROU T2m: EXP-ROU 

TKESV vs. COSMO Oper 



T2m: OBS-ROU T2m: EXP-ROU 

COSMO-DE, 31 August 2011 

TKESV vs. COSMO Oper 

Low clouds 
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