

The new global nonhydrostatic model of DWD and MPI-M

Günther Zängl (on behalf of the ICON development team)

10th SRNWP Workshop

13.05.2013

- Introduction: Main features of ICON
- Selected results: from idealized tests to NWP applications
- Time plans towards operational use of ICON

ICON = <u>ICO</u>sahedral <u>N</u>onhydrostatic model

- Joint development project of DWD and Max-Planck-Institute for Meteorology for the next-generation global NWP and climate modeling system
- Nonhydrostatic dynamical core on an icosahedral-triangular C-grid; coupled with full set of physics parameterizations
- Two-way nesting with capability for multiple nests per nesting level; vertical nesting, one-way nesting mode and limited-area mode are also available
- Local mass conservation and tracer mass continuity
- Substantially higher computational efficiency and scalability than GME

Grid structure with nested domains (schematically)

circular nests

latitude-longitude nests

Nonhydrostatic equation system (dry adiabatic limit)

$$\begin{aligned} \frac{\partial v_n}{\partial t} - (\zeta + f) v_t + \frac{\partial K}{\partial n} + w \frac{\partial v_n}{\partial z} &= -c_{pd} \theta_v \frac{\partial \pi}{\partial n} \\ \frac{\partial w}{\partial t} + \vec{v}_h \cdot \nabla w + w \frac{\partial w}{\partial z} &= -c_{pd} \theta_v \frac{\partial \pi}{\partial z} - g \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{v} \rho) &= 0 \\ \frac{\partial \rho \theta_v}{\partial t} + \nabla \cdot (\vec{v} \rho \theta_v) &= 0 \end{aligned}$$

$$\begin{aligned} v_n, w: \text{ normal/vertical velocity component} \\ \rho: \text{ density} \\ \theta_v: \text{ Virtual potential temperature} \\ \text{K: horizontal kinetic energy} \end{aligned}$$

- ζ : vertical vorticity component
- π : Exner function

blue: independent prognostic variables

Numerical implementation

- Two-time-level predictor-corrector time stepping scheme
- implicit treatment of vertically propagating sound waves, but explicit time-integration in the horizontal (at sound wave time step; not split-explicit); larger time step (usually 4x or 5x) for tracer advection / fast physics
- Finite-volume tracer advection scheme (Miura) with 2nd-order and 3nd-order accuracy for horizontal tracer advection; extension for CFL values slightly larger than 1 available
- 2nd-order and 3nd-order (PPM) for vertical advection with extension to CFL values much larger than 1 (partial-flux method)
- Monotonous and positive-definite flux limiters

Special discretization of horizontal pressure gradient (apart from conventional method; Zängl 2012, MWR)

 Precompute for each edge (velocity) point at level the grid layers into which the edge point would fall in the two adjacent cells

Discretization of horizontal pressure gradient

 Reconstruct the Exner function at the mass points using a quadratic Taylor expansion, starting from the point lying in the model layer closest to the edge point

$$\tilde{\pi}_{c} = \pi_{c} + \frac{\partial \pi_{c}}{\partial z} (z_{e} - z_{c}) + \frac{1}{2} \frac{g}{c_{p} \theta_{v}^{2}} \frac{\partial \theta_{v}}{\partial z} (z_{e} - z_{c})^{2}$$

- Note: the quadratic term has been approximated using the hydrostatic equation to avoid computing a second derivative
- Treatment at slope points where the surface is intersected:

$$\frac{\partial \pi}{\partial x}|_{S} = \frac{\partial \pi}{\partial x}|_{A} + \frac{g}{c_{p}\theta_{v}^{2}}\frac{\partial \theta_{v}}{\partial x}|_{A}(z_{S} - z_{A})$$

Physics-dynamics coupling

- Fast-physics processes: incremental update in the sequence: saturation adjustment, transfer scheme, surface coupling, turbulence, cloud microphysics, saturation adjustment
- Slow-physics processes (convection, cloud cover diagnosis, radiation, orographic blocking, sub-grid-scale gravity waves): tendencies are added to the right-hand side of the velocity and Exner pressure equation
- Diabatic heating rates related to phase changes and radiation are consistently treated at constant volume
- Option for reduced radiation grid with special domain decomposition to minimize day/night load imbalance

Selected experiments and results

- Idealized tests with an isolated steep mountain, mesh size ~300 m: atmosphere-at-rest and generation of nonhydrostatic gravity waves
- Quasi-linear Schär mountain test, mesh size 625 m
- DCMIP tropical cyclone test with/without grid nesting
- Real-case tests with interpolated IFS analysis data

atmosphere-at-rest test, isothermal atmosphere, results at t = 6h

vertical wind speed (m/s), potential temperature (contour interval 4 K)

circular Gaussian mountain, e-folding width 2 km, height: 3.0 km (left), 7.0 km (right) maximum slope: 1.27 (52°) / 2.97 (71°)

ambient wind speed 25 m/s, isothermal atmosphere, results at t = 6h

vertical (left) / horizontal (right) wind speed (m/s), potential temperature (contour interval 4 K) circular Gaussian mountain, e-folding width 2 km, height: 7.0 km maximum slope: 2.97 (71°)

Quasi-linear Schär mountain test, mountain height 250 m, results at t = 6h, mesh size 625 m

vertical (left) / horizontal (right) wind speed (m/s), potential temperature (contour interval 2 K)

7-step two-way nested real-case experiment, mesh sizes 20 km (global) – 312 m: initialized with IFS analysis data at 15.01.2012 00 UTC, 6h-hour forecast, 625m-domain

DCMIP tropical cyclone test with NWP physics schemes, evolution over 12 days

Left: single domain, 56 km; right: two-way nesting, 56 km / 28 km

Selected results of NWP test suite

- Real-case tests with interpolated IFS analysis data
- 7-day forecasts starting at 00 UTC of each day in January and June 2012
- Model resolution 40 km / 90 levels up to 75 km (no nesting applied in the experiment shown here)
- Reference experiment with GME40L60 with interpolated IFS data
- WMO standard verification on 1.5° lat-lon grid against IFS analyses; separately for January and June
- Full NWP Physics package

WMO standard verification against IFS analysis: 500 hPa geopotential, NH blue: GME 40 km with IFS analysis, red: ICON 40 km with IFS analysis

Verifikation der Vorhersagen vom 01.01.2012 00UTC bis 31.01.2012 00UTC Experiment ICON, Experiment 3840, Persistenz, Linien: Klir Parameter: Geopotential, Gebiet: NH , Druckfläche 0500 hPa

WMO standard verification against IFS analysis: 500 hPa geopotential, NH blue: GME 40 km with IFS analysis, red: ICON 40 km with IFS analysis

Verifikation der Vorhersagen vom 01.06.2012 00UTC bis 30.06.2012 00UTC Experiment ICON, Experiment 3840, Persistenz, Linien: Klir Parameter: Geopotential, Gebiet: NH , Druckfläche 0500 hPa

Time planning towards operational use

- Ongoing: systematic analysis and optimization of forecast quality of ICON using test series with interpolated IFS analyses
- Ongoing: Coupling with data assimilation
- Q3/2013: Start of preoperational tests with data assimilation
- Q2/2014: First step of operational use of ICON: replacement of GME with 13-km ICON without nesting
- Q4/2014: Second step: Replacement of COSMO-EU by nested ICON domain (13-6.5 km)
- 2015: Additional one-way nested domains for MetBw
- Main risks: technical difficulties with GRIB2 I/O via cdi library, extensions of GRIB2 standard needed for unstructured grid, generalized vertical coordinate, tile approach for surface scheme; slow progress of experiments due to database performance issues

