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Goal
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Figure: 6 inital conditions for the Benchmark test.

Successfully model a hot rising bubble in a moist atmosphere with
e phase changes
e latent heat

e sound waves removed(using P-l approx)



Why pseudo-incompressible?

e filters sound waves allowing longer time steps

e advantages over the anaelastic approximation:
e allows higher variation in p and 6
e more accurate for small scales e.g. combustion

e more easily extended to compressible equations

e P-I code currently being developed



The Pseudo-Incompressible approximation

The Compressible Euler Equations

pt +V - (pu) =0
(pu)e + V- (puou) +Vp = —gk

where P is an “energy” variable and

P = P(p).



The Pseudo-Incompressible approximation

Assume
p=po(z) + p'(x, 1)
p = po(z) + p'(x, t)
where 8p0 = —pog and p'/py << 1.

Now set p = pg in (1)

P = P(po) = Po(z).



The Pseudo-Incompressible approximation

The “energy" equation becomes a divergence constraint
(Po)t + V- (Pou) =V- (Pou) =0
and the governing equations become

pt"‘v( u) =
(pP*u)e +V - (p UOU)+VP——pgk
V- (PoU)ZO

where p* is the “pseudo-density”.



Adding moisture

Assumptions
e each state has the same temperature and velocity field

e ignoring: precipitation, ice-phase microphysics, Coriolis force,
subgrid-scale turbulence



Adding moisture

Moist compressible equations with bulk thermodynamics

pe+V - (pu) =0
(pu)e + V- (puou) +Vp = —gk

Dt = *qcond

where p = (Pa +pv+ Pc), qv = pv/Pav dc = pc/pa and S is a
latent heat source term.

Equation of state

P = P(p,7).



New Divergence Constraint

If we use time varying background pressure po(z,t) and set
(7 =7)* then P becomes

P= ’D(pO(Za t)vﬁ) = PO(Za t)
and we get the divergence constraint

The problem now is how do we calculate (Pp);?

!Almgren et al. (2006)



Calculating the time varying background state

e let wy(z,t) be the vertical velocity field that adjusts the base
state and let &1 govern the remaining local dynamics

u=wk+u

Xmax
where [ wdx =0.
Xmin
e assume weight of each column remains unchanged in the
background state
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Calculating the time varying background state

Making these assumptions we can derive governing equations for
the background state
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New governing equations

Mass

Momentum

Microphysics

Base-state updates

Divergence constraint

pr+ V- (p'u) =0

(pP*u)e + V- (p'uou)) + Vp=—pgk

_ —ic _ _;
Dt = dcond; Dt Adcond
0Py  OPowy  —
ot "oz
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Benchmark Test-Case

Video
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Figure: Contour plots of 6.
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Figure: Contour plots of the vertical velocity.



Conclusion

A working moist pseudo-incompressible model which is

e comparible in accuracy to a compressible model for the
benchmark test-case

e valid for a wider range of values than the anelastic model

e ‘“easily” extendable to a compressible model



Future plans

e parallelisation and mesh-refinement (already implemented in
dry case)

e add precipitation

e other test cases e.g. the more realistic test-case of Klassen &
Clark 1985, squall-lines....



Thank you for your attention
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