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Goal

Figure: θe inital conditions for the Benchmark test.

Successfully model a hot rising bubble in a moist atmosphere with

• phase changes

• latent heat

• sound waves removed(using P-I approx)



Why pseudo-incompressible?

• filters sound waves allowing longer time steps

• advantages over the anaelastic approximation:

• allows higher variation in ρ and θ

• more accurate for small scales e.g. combustion

• more easily extended to compressible equations

• P-I code currently being developed



The Pseudo-Incompressible approximation

The Compressible Euler Equations

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu ◦ u) +∇p = −gk
Pt +∇ · (Pu) = 0

where P is an “energy” variable and

P = P(p). (1)



The Pseudo-Incompressible approximation

Assume

p = p0(z) + p′(x, t)

ρ = ρ0(z) + ρ′(x, t)

where ∂p0
∂z = −ρ0g and p′/p0 << 1.

Now set p = p0 in (1)

P = P(p0) = P0(z).



The Pseudo-Incompressible approximation

The “energy“ equation becomes a divergence constraint

(P0)t +∇ · (P0u) = ∇ · (P0u) = 0

and the governing equations become

ρ∗t +∇ · (ρ∗u) = 0

(ρ∗u)t +∇ · (ρ∗u ◦ u) +∇p = −ρ∗gk
∇ · (P0u) = 0

where ρ∗ is the “pseudo-density”.



Adding moisture

Assumptions

• each state has the same temperature and velocity field

• ignoring: precipitation, ice-phase microphysics, Coriolis force,
subgrid-scale turbulence



Adding moisture

Moist compressible equations with bulk thermodynamics

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu ◦ u) +∇p = −gk
Pt +∇ · (Pu) = S

Dqv
Dt

= q̇cond ,
Dqc
Dt

= −q̇cond

where ρ = (ρa + ρv + ρc), qv = ρv/ρa, qc = ρc/ρa and S is a
latent heat source term.

Equation of state

P = P(p, γ).



New Divergence Constraint

If we use time varying background pressure p0(z , t) and set
(γ = γ)1 then P becomes

P = P(p0(z , t), γ) = P0(z , t)

and we get the divergence constraint

∇ · (P0u) = S − (P0)t .

The problem now is how do we calculate (P0)t?

1Almgren et al. (2006)



Calculating the time varying background state

• let w0(z , t) be the vertical velocity field that adjusts the base
state and let ũ govern the remaining local dynamics

u = w0k + ũ

where
xmax∫
xmin

w̃ dx = 0.

• assume weight of each column remains unchanged in the
background state

Dp0
Dt

=
∂p0
∂t

+ w0
∂p0
∂z

=
∂ptop0

∂t
.



Calculating the time varying background state

Making these assumptions we can derive governing equations for
the background state

• ∂P0
∂t + ∂P0w0

∂z = S

• w0(z , t) =
z∫

zmin

(S/P0 − 1/γp0
∂ptop0
∂t )dz ′

• ∂ptop0
∂t =

zmax∫
zmin

(S/P0) dz

zmax∫
zmin

1/γp0 dz

where · = 1
L

xmax∫
xmin

· dx .



New governing equations

Mass ρ∗t +∇ · (ρ∗u) = 0

Momentum (ρ∗u)t +∇ · (ρ∗u ◦ u)) +∇p = −ρ∗gk

Microphysics
Dqv
Dt

= q̇cond ,
Dqc
Dt

= −q̇cond

Base-state updates


∂P0

∂t
+
∂P0w0

∂z
= S

w0(z , t) =

z∫
zmin

(S/P0 − 1/γp0
∂ptop0

∂t
)dz ′

Divergence constraint ∇ · (P0u) = S − (P0)t



Benchmark Test-Case

Video



Benchmark Test-Case

Figure: Contour plots of θe .



Benchmark Test-Case

Figure: Contour plots of the vertical velocity.



Conclusion

A working moist pseudo-incompressible model which is

• comparible in accuracy to a compressible model for the
benchmark test-case

• valid for a wider range of values than the anelastic model

• “easily” extendable to a compressible model



Future plans

• parallelisation and mesh-refinement (already implemented in
dry case)

• add precipitation

• other test cases e.g. the more realistic test-case of Klassen &
Clark 1985, squall-lines....



Thank you for your attention
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