A Moist Pseudo-Incompressible Model

Warren O'Neill Professor Rupert Klein

Institut für Mathematik, Freie Universität, Berlin

SRNWP Workshop May 13, 2013

Outline

Goal

The Pseudo-Incompressible approximation

Adding moisture

New governing equations

Benchmark Test-Case

Conclusion

Goal

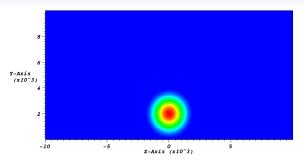


Figure: θ_e initial conditions for the Benchmark test.

Successfully model a hot rising bubble in a moist atmosphere with

- phase changes
- latent heat
- sound waves removed(using P-I approx)

Why pseudo-incompressible?

- filters sound waves allowing longer time steps
- advantages over the anaelastic approximation:
 - allows higher variation in ρ and θ
 - more accurate for small scales e.g. combustion
 - more easily extended to compressible equations
- P-I code currently being developed

The Pseudo-Incompressible approximation

The Compressible Euler Equations

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$

(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \cdot \mathbf{u}) + \nabla \rho = -g \mathbf{k}
P_t + \nabla \cdot (P \mathbf{u}) = 0

where P is an "energy" variable and

$$P = P(p). \tag{1}$$

The Pseudo-Incompressible approximation

Assume

$$egin{split} & p = p_0(z) + p'(\mathbf{x},t) \ &
ho =
ho_0(z) +
ho'(\mathbf{x},t) \end{split}$$

where
$$rac{\partial p_0}{\partial z}=-
ho_0 g$$
 and $p'/p_0<<1.$
Now set $p=p_0$ in (1)

$$P=P(p_0)=P_0(z).$$

The "energy" equation becomes a divergence constraint

$$(P_0)_t + \nabla \cdot (P_0 \mathbf{u}) = \nabla \cdot (P_0 \mathbf{u}) = 0$$

and the governing equations become

$$\rho_t^* + \nabla \cdot (\rho^* \mathbf{u}) = 0$$

(\rho^* \mathbf{u})_t + \nabla \cdot (\rho^* \mathbf{u} \cdot \mu) + \nabla \rho = -\rho^* g \mu
\nabla \cdot (\rho_0 \mu) = 0

where ρ^* is the "pseudo-density".

Adding moisture

Assumptions

- each state has the same temperature and velocity field
- ignoring: precipitation, ice-phase microphysics, Coriolis force, subgrid-scale turbulence

Adding moisture

Moist compressible equations with bulk thermodynamics

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \circ \mathbf{u}) + \nabla p = -g \mathbf{k}$$

$$P_t + \nabla \cdot (P \mathbf{u}) = S$$

$$\frac{Dq_v}{Dt} = \dot{q}_{cond}, \quad \frac{Dq_c}{Dt} = -\dot{q}_{cond}$$

where $\rho = (\rho_a + \rho_v + \rho_c)$, $q_v = \rho_v / \rho_a$, $q_c = \rho_c / \rho_a$ and S is a latent heat source term.

Equation of state

$$P=P(p,\gamma).$$

New Divergence Constraint

If we use time varying background pressure $p_0(z, t)$ and set $(\gamma = \overline{\gamma})^1$ then P becomes

$$P = P(p_0(z,t),\overline{\gamma}) = P_0(z,t)$$

and we get the divergence constraint

$$\nabla \cdot (P_0 \mathbf{u}) = S - (P_0)_t.$$

The problem now is how do we calculate $(P_0)_t$?

¹Almgren et al. (2006)

Calculating the time varying background state

 let w₀(z, t) be the vertical velocity field that adjusts the base state and let ũ govern the remaining local dynamics

$$\mathbf{u} = w_0 \mathbf{k} + \tilde{\mathbf{u}}$$

where
$$\int_{x_{min}}^{x_{max}} \tilde{w} \, \mathrm{d}x = 0.$$

• assume weight of each column remains unchanged in the background state

$$\frac{Dp_0}{Dt} = \frac{\partial p_0}{\partial t} + w_0 \frac{\partial p_0}{\partial z} = \frac{\partial p_0^{top}}{\partial t}.$$

Calculating the time varying background state

Making these assumptions we can derive governing equations for the background state

•
$$\frac{\partial P_0}{\partial t} + \frac{\partial P_0 w_0}{\partial z} = \overline{S}$$

• $w_0(z, t) = \int_{z_{min}}^{z} (\overline{S}/P_0 - 1/\overline{\gamma}p_0 \frac{\partial p_0^{top}}{\partial t}) dz'$
• $\frac{\partial p_0^{top}}{\partial t} = \frac{\int_{z_{min}}^{z_{max}} (\overline{S}/P_0) dz}{\int_{z_{min}}^{z_{max}} 1/\overline{\gamma}p_0 dz}$
where $\overline{\cdot} = \frac{1}{I} \int_{z_{max}}^{z_{max}} \cdot dx$.

Xmin

New governing equations

Mass Momentum Microphysics

Base-state updates

Divergence constraint

$$\begin{aligned} \rho_t^* + \nabla \cdot (\rho^* \mathbf{u}) &= 0\\ (\rho^* \mathbf{u})_t + \nabla \cdot (\rho^* \mathbf{u} \circ \mathbf{u})) + \nabla p &= -\rho^* g \mathbf{k} \\ \frac{Dq_v}{Dt} &= \dot{q}_{cond}, \quad \frac{Dq_c}{Dt} &= -\dot{q}_{cond} \\ \begin{cases} \frac{\partial P_0}{\partial t} + \frac{\partial P_0 w_0}{\partial z} &= \overline{S} \\ w_0(z, t) &= \int\limits_{z_{min}}^{z} (\overline{S}/P_0 - 1/\overline{\gamma} p_0 \frac{\partial p_0^{top}}{\partial t}) \, \mathrm{d}z' \\ \nabla \cdot (P_0 \mathbf{u}) &= S - (P_0)_t \end{aligned}$$

Benchmark Test-Case

Video

Benchmark Test-Case

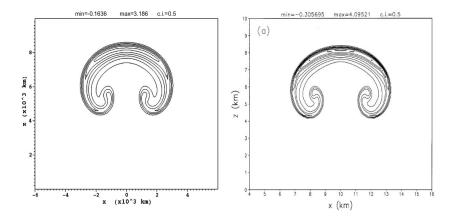


Figure: Contour plots of θ_e .

Benchmark Test-Case

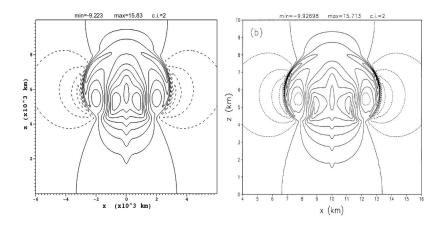


Figure: Contour plots of the vertical velocity.

A working moist pseudo-incompressible model which is

- comparible in accuracy to a compressible model for the benchmark test-case
- valid for a wider range of values than the anelastic model
- "easily" extendable to a compressible model

Future plans

- parallelisation and mesh-refinement (already implemented in dry case)
- add precipitation
- other test cases e.g. the more realistic test-case of Klassen & Clark 1985, squall-lines....

Thank you for your attention