

Intercomparison of AROME and COSMO simulations for a period of the AMMA campaign

Vera Maurer¹, Florent Beucher², Jean-Philippe Lafore², Francoise Guichard², Jeremie Aublanc³, Remy Roca³

¹KIT, Karlsuhe; ²CNRS / Meteo France; ³LEGOS / OMP

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

General comparison of model components

	AROME	COSMO
parameterizations		
turbulence scheme	prognostic TKE, comp. of exchange-coeff. (Cuxart et al., 2000)	TKE-based level 2.5 turbulence closure after Mellor and Yamada (1982)
shallow convection	Eddy diffusion / Kain Fritsch (EDKF)	shallow convection from Tiedtke mass-flux scheme
radiation	two-stream approximation (RRTM scheme from IFS)	radiative transfer after Ritter and Geleyn (1992)
microphysics	mixed-phase bulk scheme	cloud-ice bulk scheme including graupel
soil model	ISBA (3 layers)	Terra-ML (8 layers)

General comparison of model components

	AROME	COSMO
numerics	spectral limited-area model	rotated geographical lat/lon grid
	semi-implicit, semi- Lagrangian timestep	3rd order two time-level Runge- Kutta split-explicit scheme (Wicker and Skamarock, 2002)
	Arakawa A-grid terrain-following hybrid mass coordinates	Arakawa C-grid terrain-following hybrid height- based coordinate
model setup		model version 4.18
initial and bound- ary conditions	Arpège analysis using AMSU-B microwave data	ECMWF AMMA re-analysis (6- hourly resolution)
	nominal res. of 0.05°	0.025°

20N

25.06.2013

anomaly of precipitable water with respect to 6-day period, averaged over 12-20°N

AROME COSMO 23/07 25/07 27/07 29/07 12W 3Έ 9E 12E 15E 911 6W 3W 6E 18E 15°W 2°E 20°E -10-8 -6 -4 -2 0 2 4 6 8 10 mm

precipitation 5-day mean

MCS tracking – definition of "blobs"

MCS tracking 25/07 and 26/07

MCS tracks derived from GSMAP precipitation product

tracks derived from COSMO hourly precipitation data interpolated to 0.1°

MCS tracking - statistics

Maurer et al.: Intercomparison of AROME and COSMO simulations for a period of the AMMA campaign

MCS tracking – statistics (2)

10 25.06.2013

Maurer et al.: Intercomparison of AROME and COSMO simulations for a period of the AMMA campaign

IMK-TRO, KIT (Karlsruhe)

boundary layer - vertical profiles at 12 UTC

Maurer et al.: Intercomparison of AROME and COSMO simulations for a period of the AMMA campaign

distribution of boundary-layer heights

comparison of boundary-layer characterisics

surface layer – humidity and potential temperature

Conclusions

- intercomparison of two simulations with similar setup but different initial and boundary conditions
- displacement of convective activity towards the south by AROME and towards north by COSMO
- daily cycle of convective systems for both simulations in accordance with precipitation product
- maximum surface of systems underestimated, intensity overestimated wrt GsMAP (under investigation)
- overestimation of total precipitation sum by AROME and underestimation by COSMO → general behavior of each model for convective situations ?
- different boundary layer states: COSMO warmer and moister than AROME
- day-to-day variability larger in COSMO (more clouds, higher variations in turbulent fluxes)
- no clear explanation for differences in precipitation amounts

zonal wind component at eastern boundary

