Statistical Postprocessing of Weather Parameters for a High-Resolution Limited-Area Model

Susanne Theis Andreas Hense

Meteorologisches Institut Universität Bonn Ulrich Damrath Volker Renner

Overview

- Introduction
- Description of Method
- Examples
- Verification Results
- Calibration of Reliability Diagrams
- Concluding Remarks

Basic Set-up of the LM

Model Configuration

Full DM model domain with a grid spacing of 0.0625° (~ 7 km) 325 x 325 grid points per layer 35 vertical layers timestep: 40 s three daily runs at 00, 12, 18 UTC

Boundary Conditions

Interpolated GME-forecasts with ds ~ 60 km and 31 layers (hourly) Hydrostatic pressure at lateral boundaries

Data Assimilation

Nudging analysis scheme Variational soil moisture analysis SST analysis 00 UTC Snow depth analysis every 6 h LM Topography (m), ds ~ 7 km

SWSA 2003

Methods

- Neighbourhood Method (NM)
- Wavelet Method
- Experimental Ensemble Integrations

Neighbourhood Method

Assumption:

LM-forecasts within a spatio-temporal neighbourhood are assumed to constitute a sample of the forecast at the central grid point

Definition of Neighbourhood I

SWSA 2003

Definition of Neighbourhood II

SWSA 2003

Definition of the Quantile Function

The quantile function x is a function of probability p.

If the forecast is distributed according to the probability distribution function F, then

 $x(p) := F^{-1}(p)$ for all $p \in [0, 1]$.

There is a probability p that the quantile x(p) is greater than the correct forecast.

(Method according to Moon & Lall, 1994)

Products

"Statistically smoothed" fields

- Quantiles for p = 0.5
- Expectation Values

Probabilistic Information

- Quantiles
- (Probabilities for certain threshold values)

SWSA 2003

SWSA 2003

SWSA 2003

Direct model output of the LM for precipitation at a given grid point

SWSA 2003

...supplemented by the 50 %-quantile

SWSA 2003

...supplemented by more quantiles (forecast of uncertainty)

SWSA 2003

...supplemented by the 90 %-quantile (forecast of risk)

SWSA 2003

Verification

Data

LM forecasts; 1.-15.09.2001; 00 UTC starting time 1 h values; 6-30 h forecast time all SYNOPs available from German stations comparison with nearest land grid point

NM-Versions

small:3 time levels (3 h); radius: $3\Delta s \ (\approx 20 \text{ km})$ medium:3 time levels (3 h); radius: $5\Delta s \ (\approx 35 \text{ km})$ large:7 time levels (7 h); radius: $7\Delta s \ (\approx 50 \text{ km})$

Averaging

square areas of different sizes temperatures adjusted with -0.65 K/(100 m)

Figure 3. Reliability diagrams for theoretical ensemble forecasts for (a) a 10-member ensemble prediction system (EPS) and (b) a 50-member EPS. Distribution of underlying forecast probabilities is completely reliable and specified by a beta distribution with r = s = 3. See text for details and explanation of symbols.

Richardson, D.S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Q.J.R.Meteorol.Soc., Vol.127, pp. 2473-2489)

SWSA 2003

SWSA 2003

Calibration

- Empirical Approach: use a large data sets of forecasts and observations
 - PRO: covers all relevant effects
 - CON: calibration is dependent on LM-version
- Theoretical Approach:

focus on the effect of limited sample size only

- PRO: effect can be quantified theoretically, without large data sets calibration is independent of LM-version
- **CON**: all other effects are neglected

Calibration Procedure:

- choose probability *p* of the desired quantile
 (e.g. *p*=90%, if you would like to estimate the 90%-quantile)
- determine sample size *M*, frequency μ of the event and predictability σ of the event *(a priori)*
- calculate a probability $p' = p'(p, M, \mu, \sigma)$ from statistical theory (Richardson, 2001), let's say p' = 95%
- estimate 95%-quantile and redefine it as a 90%-quantile

Figure 3. Reliability diagrams for theoretical ensemble forecasts for (a) a 10-member ensemble prediction system (EPS) and (b) a 50-member EPS. Distribution of underlying forecast probabilities is completely reliable and specified by a beta distribution with r = s = 3. See text for details and explanation of symbols.

Richardson, D.S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Q.J.R.Meteorol.Soc., Vol.127, pp. 2473-2489)

SWSA 2003

Preliminary Results of Calibration (small neighbourhood):

(LM forecasts; 10.-24.07.2002; 00 UTC starting time)

Determination of $p' = p'(p, M, \mu, \sigma)$:

integrate $p' = p'(p, M, \mu, \sigma)$ over all possible values of μ and σ and over M=[1,80]

SWSA 2003

Effect of Limited Sample Size on Quantiles for p=0.9

Probability of exceedance of $\hat{x}(0.9)$ depending on the observed frequency μ for different values of effective sample size *M* and a prescribed value of $\sigma^2=0.25 \ \mu (1-\mu)$

SWSA 2003

Concluding Remarks

"Statistically Smoothed" Fields

For temperature no mean advantage is to be seen in comparison with simple averaging

The results for precipitation are difficult to judge upon; proper choice amongst the various possibilities is still an open question

Reliability Diagrams

Possible improvement by calibration remains to be explored

The results for precipitation clearly demonstrate the need for improving the model (reduce the overforecasting of slight precipitation amounts)

Concluding Remarks (ctd.)

Application

The method might be useful not only for single forecasts but also in combination with small ensembles