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SLICE-3D specifications

1. SLICE-3D is a conservative and computationally efficent semi-Lagrangian scheme
for the transport of scalars.

2. SLICE-3D uses multiple sweeps of a one-dimensional remapping algorithm along
Eulerian and Lagrangian directions. This cascade-type splitting, and flow-dependent,
strategy reduces the splitting error compared to traditional fixed direction-based
splitting.

3. SLICE-3D does not compute at any stage, or needs to know, about the complex
geometry of irregular Lagrangian volumes. This constitute an andvantage by com-
parison to volume-based multi-dimensional remapping.

4. SLICE-3D uses a C-grid wind-density staggering arrangements.

5. SLICE-3D would work by taking the vertical as the first cascade direction. This is
for following reasons:

(a) since the grid spacing in the vertical is known and is the same at each timestep,
a higher-order remapping scheme can be applied efficiently as various factors
can be precomputed and stored
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SLICE-3D specifications

(b) it Is possible to impose exactly a global max/min that is non-zero since the
cross-sectional area is known exactly.

6. Having cascaded in the vertical, we are left with N (the number of vertical levels)
SLICE-2D problems in the (deformed) horizontal. SLICE-2D in turn is a series of
horizontal sweeps of the same 1d-remapping algorithm.

7. All distances used SLICE-3D are 3D physical distances.

8. SLICE-3D computes some 3D and 2D interesctions. This overhead is wind (or de-
formed geometry) dependent and independent of scalars. Therefore, it is antici-
pated that this overhead will be relatively small when SLICE-3D is used for a large
number of physical/chemical species.
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SLICE-1D approach
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Reconstruction (PCM)

- hi—h- X

The Piecewise Cubic Method ( Zerroukat, Wood and Staniforth, Q. J. R. Meteo. Soc., 2002

pi (&) = a; + b€ + ;& + di&?, € €0,1]
that satisfies:

dp;
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0 § le=1/2
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Reconstruction (PCM)

where
ai = Pi-1/2;
bi = —06pi_1/2 + 6p; — 20p;, 3)
ci = 9Ipi_1j2 — 3piy1/2 — 6p; + 6dp;,
di = —4pi—1/2 + 4pig172 — 40p;.

Evaluation of the 3 unknown cubic parameters {pi_l/z, Pit1/25 5pl~}
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Reconstruction (PSM)

PCM + (0p; = pi+1/2 — pi—1/2) —> Parabola (Piecewise Parabolic Method (PPM) of Colella and Woodward,
J. Comput. Phys. 1984

pi (&) = a; + bi& + &, £ €[0,1] (4)
that satisfies
1
pi = /o pi (§)dE , pi(0) =picija , pi(1) = piz1y2 (5)
Parabolic Spline Method (PSM) ( Zerroukat, Wood and Staniforth, Int. J. Num. Meth. Fluids, 2006

1 1

1 1 Pi | Pit1
hi pz_% (hl hi—l—l) /014-5 hi+1 pH_% (hl hi—i—l ( )

% _ dpit1
dx dx

Tit1/2

PSM is more accurate than PPM but with a computational cost of only 60% of that of PPM
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PSM (Monotonicity)

1. Non-monotonic behaviour at the grid scale

(a) The estimates {p; 1, i = 1,2,...} at the cell boundaries are tested
for undershoots and overshoots with respect to {pi, i=1,2,...}

(b) The non-monotonic values are corrected (the closest 0i)
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PSM (Monotonicity)

1. Non-monotonic behaviour at the sub-grid scales

(a) The parabola is tested for non-monotonic behaviour within the in-
terval ¢ € |0, 1]

(b) The parabola is modified to the limiting case of monotonicity (dis-
continuities)

(c) If the limiting case is not possible = piecewise constant profile
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SLICE-2D
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Figure 1: Superposition of Lagrangian and Eulerian grids away from poles.
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SLICE-2D (polor cap region)

Figure 2: Superposition of Lagrangian and Eulerian grids in the vicinity of the north pole.
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SLICE-2D

To take into account for the inaccuracy of the pivoting assumption for a region near
the poles (polar cap), the density field is corrected (while maintaining mass conserva-
tion), using standard Semi-Lagrangian solution as a guide, i.e.,
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SLICE-3D

SLICE-3D remapping

1.

Given the Eulerian masses m;, ;. for the spherical Eulerian Control-Volumes ( ECV, ;). ECV, ;. is
delimited by ;> and A;;,/, in the A-direction; by ¢;_ 1/, and ¢;.,in the ¢-direction; and by 7,/
and r.41,2in the r-direction ( Volume = 1/3 6r° 6\ §(sin ¢))

The union of all the grid-points  (Ay;_1/2, ¢v;—_1/2, Tx—1/2) fOr a constant £ —1/2, forms a discrete regular
spherical Eulerian Shell (ES) k— 1/2 (k=1/2 (surface) and k= K+1/2 (top surface)); The union of all
the grid points (A, 12— 1/2,k— 1/2v¢vz 1/2,9j—1/2,k— 1/277”\7@ 1/2.0j-1/2.5-1/2) form a discrete deformed closed
(irregular) Lagrangian Shell (LS) £ —1/2. (ES + wind) —> LS.

Each LS k—1/2 (including bottom and top surfaces) intersects each column (i,7) ata hight T;f—l/Q’ k=
1,..., K + 1 (vertical intersection computation).

Given the set of masses {m, i, k=1,..., K}, for each column (i, ), perform a SLICE-1D to compute
the intermediate masses {m/;,,k =1,..., K} of the Intermediate Vertical Control Volume ( IVCV;;;).
IVCVi; . is delimited by  A\;_;» and ;1,5 inthe A-direction; by ¢;_;,, and ¢;..in the ¢-direction; and
by 7}, and 7}, ,in the r-direction.

Given the intermediate masses {mgyjjk, i=1..,N;j=1, ...,M}of a spherical annuli £ =1, ..., K (vol-
ume between two LS’s k£ —1/2 and k + 1/2), use SLICE-2D to remap mass from the IVCVs to its final
Lagrangian CVs (LCVSs).
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SLICE-3D (econt.)

Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(ORIGINAL POLAR) Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(ORIGINAL POLAR)
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SLICE-3D (econt.)

Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTESI/

Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTESIAN)
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SLICE-3D (econt.)

Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTI
Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTESIAN)
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Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTESIAN)
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Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTESI

grid formed by the 2d departure passed to slice-2d for levels 1 to 5
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SLICE-3D Intesections

1. Computation of intersections of the spherical shells with the verti-
cal columns. This invloves computing the height ( r) at which each
deformed spherical shell intersects each vertical column using a bi-
linear interpolation. These are needed for vertical remapping.

2. Intersections in the SLICE-2D are intersections of great circles with
latitudes circles. These are needed for the second and third cascade
remappings.

3. These extra computations are geometry dependent. These are done
only once per time step irrespective of the number of scalars. There-
fore, this extra cost can be offset by increasing the number of scalars.
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Test Problems (A Hadley cell circulation test)

initial state (70 steps ) ( Hadly Cells Test )
Wind for centre points T
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Test Problems (Hadley cells circulation test)

SLatt =T/2 (20 steps ) (Hadley Cells)

2 : 5 i
1.8 :
1.6 e
1.4
1 :
1 0 1
¢

PSM

SLICE att = T/2 (20 steps ) (Hadley Cells)

Rt ; —
1.84----4 SR PR R I
161 [ - S
14 .
12f - o

P — e s L 5

-1 0 1
0

©Crown Copyright 2006

SLatt=T (40 steps ) (Hadley Cells)
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Test Problems (Hadley cells circulation test)

SLatt =T/2 (20 steps ) (Hadley Cells)
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SLICE att = T/2 (20 steps ) (Hadley Cells)
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PSM- MONO
SLatt=T (40 steps ) (Hadley Cells)
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initial state (20 steps ) { Rosshy wave Test )
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Test Problems (A Rossby wave test)

©Crown Copyright 2006
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Test Problems (A Rossby wave test)
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Test Problems (superposed Rossby and Hadley tests)

initial state (20 steps ) ( Rossby wave Test )

Wind for centre points
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Test Problems (superposed Rossby and Hadley tests)

PPM
SLatt=T/2 (10 steps ) (Rossby-Hadley Test)
2 :

1.8
1.6

[

1.4

121

1

2
1.8
1.6

14

121

P — s e

©Crown Copyright 2006

SLatt=T (20 steps ) (Rossby-Hadley Test)
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Test Problems (superposed Rossby and Hadley tests)

PSM- MONO

SLatt=T/2 (10 steps ) (Rossby-Hadley Test)
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SLatt=T (20 steps ) (Rossby-Hadley Test)
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Test Problems (superposed Rossby and Hadley tests)

SLatt=T/2 (10 steps ) (Rossby-Hadley Test) SLatt=T (20 steps ) (Rossby-Hadley Test)
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Test Problems (rotated superposed waves)

initial state (20 steps ) { Rossby wave Test
Wind for centre points { ps)y y )
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Test Problems (rotated superposed waves)
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SLatt=T/2 (5 steps ) (Rot. Rossby-Hadley)
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Conclusions

1. SLICE-3D has been tested on a number of idealised tests and the
results show that the scheme is more accurate and efficent compared
to tri-cubic interpolating non-conservative SL.

2. The scheme (code) is now beeing optimised, implemented, and tested
within the UM system.

3. The scheme will be an integral part of the next UM dynamical core,
and likely to be the default transport algorithm for climate, chemistry
and other models.
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