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Talk outline

1. Brief description of the semi-implicit semi-Lagrangian (SISL) predictor-corrector
scheme of the non-hydrostatic Unified Model

2. An iterative version of the Unified Model SISL scheme
3. Results from a high resolution mesoscale case study

4. Global model results
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Main features of the Unified Model

Met Office Unified Model (UM) Davies et al (2005, QJRMS):

e A single code library used for operational weather forecasts (global, regional,
mesoscale), climate predictions and as a research tool:
> It operates efficiently on a wide spectrum of horizontal resolutions, from
200 km down to 1 km

e Non-hydrostatic, deep atmosphere, semi-Lagrangian model

¢ Finite difference gridpoint model with terain following height based vertical
coodinate: C-grid in the horizontal, stretched quadratic in the vertical with
Charney-Phillips staggering

e Two time-level semi-implicit predictor-corrector time integration

e 3D Helmholtz equation
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The UM semi-implicit semi-Lagrangian scheme

Consider the prognostic equation

DX
T = LX) + N(x, 8, X) + S(x, 8, X) + F(x, t, X)

where, x, L, N denote position, linear and nonlinear dynamical terms and S,
F slow and fast physics forcing. Semi-implicit semi-Lagrangian (SISL) target
discretization (Staniforth & Coté, MWR 1991):

Xn+1 . Xg

N =(1-a)L+N+S+F)i+aL+N+S+F)"" 1/2<a<1.

For CPU cost efficient solution the implicit nonlinear coupling should be re-
duced: A predictor-corrector approach is used.
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UM predictor-corrector time scheme

Compute X" via a predictor-corrector approach:

XW = X"+ (1 — a)At(L + N2 + At (S)) + aAt(L + N)"
X = XU 4 AR (X, XM X2
X® — aAtL®) = X&) 4 aAt(N* — N" — L")

where,

X - first predicted value, X(? : predicted value after fast physics, X©) =Xn+1
the final estimate and N* ~ N" "1,

Eliminating the intermediate stages:

X" = X 4 (1 — a)AHL + N+S)" + aAt L™ + N* + F(X", X, X<2>)} .
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Departure point calculation

Approximate

as,

x, — x5~ At-U [(Xa +x4)/2, t”*ﬂ :
Compute x, iterating

Xg+1] = X, — AtUm, [=0,1

*

where,
~ x _ 3 1
U,=U (%, t”H/Q) , Ux, t"1/?) = §U (x,t") — §U (x,t" — At) .

Extrapolation introduces a weak instability Cordero et al (QJRMS, 2005).
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lterative SISL scheme for the UM

Stability of the SI scheme can be enhanced using an iterative fixed point algo-
rithm: Coté et al (MWR, 1998), Cullen (QJRMS, 2001), Bénard (MWR, 2003),
Cordero et al (QIRMS, 2005).

Recently developed iterative version of the UM scheme:

X = X8+ (1 — a)At (L+ N)j +At(S)) + aAt (L+N)©
XA — x4 AF(xﬂ)x(l)[f]’X(Q)[ﬁ])
XOU _ o ALY — @ L AL (N* _ N®I-1 L(B)M—u)

where, / =1,2,... and

O = 1, (X<3>m) CONOM = N(xXOE) LO0 = xny, NOU = N(X?)

e For / = 1 the current non-iterated scheme is obtained
e For / > 1 more stable and accurate scheme
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Departure point calculation in the iterative scheme

Likewise, compute x, iterating

Xg—H] = x, — AtUY, [=0,1
where,
U. = 6 Xa+Xd€ n+1/2
* — 2 9 Y

e _ [ (L= U (" = A AU (x,87), £ =1

Ul 277 = { LU0 %) + U x), (> 1
where:

o/ =1:

>~ = 3/2: 2nd order extrapolating scheme
>~ = 1. 1st order non-extrapolating scheme

e / > 1. 2nd order interpolating scheme: stable + more accurate
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Resulting improvements in the UM

e More stable and accurate departure point calculation

e Improved handling of the deep atmosphere Coriolis terms in momentum
equations:
>Non-iterated scheme: explicit handling
> [terated scheme: semi-implicit handling

e Improved semi-implicit handling of the nonlinear vertical pressure gradient
term Nype = ¢,0,VII In momentum equations:

>Non-iterated scheme: N . = ¢,0, 7' VII"" = oV i.e. a partially up-
dated 6,
>Iterated scheme: N7 . = cp@j}“VH”“ R cpeff’)w_l]vnnﬂ, i.e. a fully up-
dated 6,

e Improved physics-dynamics coupling

Details of discretization submitted for publication in QJRMS.
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Mesoscale Alpine Programme (MAP) case study

e Mesoscale case study over the Alps (Smith, QJRMS 2003)

e High horizontal resolution (1km). Deep, narrow, low-lying valleys are well
resolved

e Monotone, fully-interpolating SISL for ¢ is used here. In operations, a non-
Interpolating in the vertical SL scheme for ¢ is used
>With a fully interpolating scheme, a more realistic simulation is obtained in
this case study
>However, stability is weakened and a shorter timestep is required

e Stability improves when the 2-iteration scheme is used.
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Zonal Avg W at T+2: Timestep=30s, I—iteration
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Atmos theta after timestep at 20.00 metres
at 1000 08/11/99 from 0000 08/11/99
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(i) Low level 6 at T+6: 1-iteration, At=15s

(i) Low level 6 at T+6: 2-iterations, At=40s

The 2-iteration scheme with At = 40s gives similar solution with the standard
UM 1-iteration scheme and At = 15s. Small differences up to 1°K can be

observed in the valleys south of the Alps.




Summary from the mesoscale case study

On this mesoscale case study the iterative SISL scheme enables increasing
the timestep. With a fully interpolating scheme for #-advection, the maximum
timestep which results in a stable and noise free UM forecast is:

e A\t = 15s with 1-iteration

e At = 40s with 2-iterations. This run is more CPU time efficient (gain ~ 30%)

Overall:

e Forecasts run stably with a small amount of de-centring in the semi-implicit
time discretization

e Good accuracy and stability

e No noticeable difference in the solution when in the first iteration the standard
2nd order extrapolating scheme or the 1st order non-extrapolating scheme
for the departure point calculation is used
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Global model case studies

e Suite of 10 forecasts only (no data assimilation) case studies: 5 winter, 5
summer

e Case studies have run on global model at:
> old resolution (before December '05) ~ 60km at mid latitudes and 38 levels
In the vertical, 20minutes timestep
>new enhanced resolution (December '05) ~ 40km at mid latitudes and 50
levels in the vertical, 15 minutes timestep. Extra levels in the stratosphere as
model lid was raised from 40 to 65 km.

e Starting from ECMWF data and verified against ECMWF analyses. Root
Mean Square Error (RMSE) measures displayed:

N
1
— E _ A R 2 2
RMS Egeqiar = \ N 2 (F; — A2, RMSEings = \/RMSEU + RMSEY,

where F}, A; forecast and analysis values at ;' gridpoint.
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Summary of global model results and conclusions

e The iterative scheme improves forecasting accuracy as the reduction in RMSE
suggests

e The iterative scheme is expensive: a 2-iteration global run costs an extra
60%. However, the test presented suggests that accuracy improvements
comparable to those achieved using a more expensive higher resolution set
up can be achieved

Overall summary:

e Applying an iterative approach in the UM improves both stability and accu-
racy. Although some design choices in the UM differ from other SISL models,
notably the timestepping, our results are consistent with results reported in
the literature by other centres.
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