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Abstract— Our method MISH (Meteorological Interpolation based on Surface 
Homogenized Data Basis; Szentimrey and Bihari) was developed for spatial interpolation 
of meteorological elements. According to mathematical theorems, the optimal interpolation 
parameters are known functions of certain climate statistical parameters, which fact means 
we could interpolate optimally if we knew the climate. Furthermore, the data assimilation 
methods also need to know the climate if Bayesian estimation theory is to be correctly 
applied. Therefore, we have developed the MISH system also to model the climate 
statistical parameters, i.e. present climate, by using long data series. It is a nonsense that 
we try to model the future climate but we do not know the present climate.  
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1. Introduction 

In the statistical climatology, the climate can be formulated as the probability 
distribution of the meteorological events or variables. The purpose of the 
statistical climatology is to estimate or model the climate probability distribution 
or equivalently the climate statistical parameters. Furthermore, the meteorological 
data series make possible to estimate or model the climate statistical parameters 
in accordance with the establishments of statistical climatology principles. 

Our method MISH (Meteorological Interpolation based on Surface 
Homogenized Data Basis; Szentimrey and Bihari, 2007, 2014; Szentimrey, 2017, 
2021, 2023c) was developed for spatial interpolation of meteorological elements. 
According to the mathematical theorems, the optimal interpolation parameters are 
known functions of certain climate statistical parameters, which fact means we 
could interpolate optimally if we knew the climate. Consequently, according to 
the principles of climatology, the modeling part of software MISH is based on 
long meteorological data series. The main difference between MISH and the 
geostatistical interpolation methods built in GIS (Geographic Information 
System) is that the sample for modeling at GIS methods is only the predictors, 
which is a single realization in time, while at the MISH method we use 
spatiotemporal data for modeling, which form a sample in time and space alike.  

We focus on the methodology of the modeling subsystem built in MISH. 
This subsystem was developed to model the following climate statistical 
parameters for half minutes grid: monthly, daily expected values, standard 
deviations, and the spatial and temporal correlations. Consequently, the modeling 
subsystem of MISH is completed for all the first two spatiotemporal moments. If 
the joint spatiotemporal probability distribution of a given meteorological element 
is normal (e.g., daily and monthly mean temperatures) then the spatiotemporal 
moments above uniquely determine this distribution, which is the mathematical 
model of the present climate for this meteorological element. 

In our conception, the meteorological questions and topics cannot be treated 
separately. Therefore, we present a block diagram (Fig. 1) to illustrate the possible 
connection between various important meteorological topics. The software MISH 
(Szentimrey and Bihari, 2014) and MASH (Multiple Analysis of Series for 
Homogenization; Szentimrey, 2023a,b) were developed by us. These software 
were applied also in the CARPATCLIM project (Szentimrey et al., 2012a,b; 
Lakatos et al., 2013). The paper of Izsák et al. (2022) presents another application 
to create a representative database for Hungary. 
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Fig. 1. Block diagram for the possible connection between various basic meteorological topics 
and systems. 

 
 

2. Theoretical additive model of spatial interpolation  

According to the interpolation problem for monthly or daily data, the unknown 
predictand 𝑍ሺ𝐬଴, 𝑡ሻ is estimated by use of the known predictors 𝑍ሺ𝐬୧, 𝑡ሻ 
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ሺ𝑖 = 1, . . . ,𝑀ሻ where s is the location vector ሺ𝐬 ∈ 𝐷 spatialdomainሻ and 𝑡 is the 
index of year. The type of the adequate interpolation formula depends on the 
probability distribution of the meteorological variable. Assuming normal 
distribution (e.g., temperature), the additive (linear) formula is adequate 
(Szentimrey and Bihari, 2007; Szentimrey et al., 2011).  

2.1. Climate statistical parameters 

The expected values are E൫𝑍ሺ𝐬௜ , 𝑡ሻ൯ = 𝜇ሺ𝑡ሻ + 𝐸ሺ𝐬௜ሻሺ𝑖 = 0, . . ,𝑀ሻ , 
where 𝜇ሺ𝑡ሻ is the temporal trend or the climate change signal and 𝐸ሺ𝒔ሻ is the 
spatial trend. The standard deviations 𝐷(𝐬௜) = D൫𝑍(𝐬௜ , 𝑡)൯ (𝑖 = 0, . . . ,𝑀) and the 
correlation system is as, 𝐫 is the predictand-predictors correlation vector, 𝐑 is the   
predictors-predictors correlation matrix.  

2.2. Additive (linear) interpolation formula 

Assuming the normal distribution of the variables and the above model of 
expected values, the appropriate additive meteorological interpolation formula is  𝑍∧(𝐬଴, 𝑡) = 𝜆଴ + ∑ 𝜆௜ ⋅ 𝑍(𝐬௜ , 𝑡)ெ௜ୀଵ    ,  
where ∑  𝜆௜ெ௜ୀଵ = 1  because of unknown 𝜇(𝑡). The quality of interpolation can 
be characterized by the root mean square error 𝑅𝑀𝑆𝐸(𝐬଴) and by the 
representativity value: 𝑅𝐸𝑃(𝐬଴) = 1 − ோெௌா(𝐬బ)஽(𝐬బ)  . 
 
Remark: Multiplicative model of spatial interpolation  
 
In this paper only the linear or additive model is described in detail, which is 
appropriate in case of normal probability distribution. However, perhaps it is 
worthwhile to remark that for case of a quasi lognormal distribution (e.g., 
precipitation sum), we deduced a mixed multiplicative additive formula which is 
used also in our MISH system, and it can be written in the following form: 𝑍∧(𝐬଴, 𝑡) = 𝜗 ⋅ ൬∏  ቀ௤೔⋅௓(𝐬೔,௧)ణ ቁఒ೔௤೔⋅௓(𝐬೔,௧)ஹణ ൰ ⋅ ൬∑  𝜆௜௤೔⋅௓(𝐬೔,௧)ஹణ + ∑  𝜆௜ ⋅௤೔⋅௓(𝐬೔,௧)ழణ ቀ௤೔⋅௓(𝐬೔,௧)ణ ቁ൰,            
where the interpolation parameters are 𝜆௜ ≥ 0 (𝑖 = 1, . . . ,𝑀), ∑  𝜆௜ெ௜ୀଵ = 1, and 𝜗 = 𝑚(𝐬଴), 𝑞௜ = ௠(𝐬బ)௠(𝐬೔), where 𝑚(𝐬௜) (𝑖 = 0, . . . ,𝑀) are the spatial median values.  

2.3. The optimal interpolation 

The optimal interpolation parameters 𝜆଴,  𝜆௜ (𝑖 = 1, . . . ,𝑀) minimize the root 
mean square error 𝑅𝑀𝑆𝐸(𝐬଴), and these are known functions of the climate 
statistical parameters! The optimal interpolation is when we use the optimal 
parameters. 
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The optimal constant term is   𝜆଴ = ∑ 𝜆௜൫𝐸(𝐬଴) − 𝐸(𝐬௜)൯ெ௜ୀଵ .      
The vector of optimal weighting factors 𝛌 = ሾ𝜆ଵ, . . , 𝜆ெሿ்and the optimal 
representativity 𝑅𝐸𝑃(𝐬଴) can be written as function of the parameters: 𝐷(𝐬଴) 𝐷(𝐬௜)⁄  (𝑖 = 1, . . . ,𝑀),  𝐫,  𝐑. The expected values and these parameters 
are climate statistical parameters, consequently we could interpolate optimally if 
we knew the climate well. For example, let us see the next theorem. 
 
Theorem 1 
 
If 𝐷(𝐬଴)/𝐷(𝐬௜) = 1     (𝑖 = 1, . . . ,𝑀)  then:  

(i) The vector of optimal weighting factors: 𝛌 = 𝐑ିଵ ቀ𝐫 + ൫ଵି𝟏𝐓𝐑ష𝟏𝐫൯𝟏౐𝐑షభ𝟏 𝟏ቁ.   
(ii) The optimal representativity is 

 𝑅𝐸𝑃(𝐬଴) = 1 −ට(1 − 𝐫୘𝐑ି𝟏𝐫) + (1 − 𝟏𝐓𝐑ି𝟏𝐫)ଶ ⋅ ଵ𝟏౐𝐑షభ𝟏 .  

Consequently the unknown climate statistical parameters are 𝐸(𝐬଴) − 𝐸(𝐬௜) (𝑖 = 1, . . . ,𝑀) (do not depend on temporal trend of climate change) and the 
correlations  𝐫,  𝐑. 

3. Modeling of climate statistical parameters in MISH 

The main difference between geostatistics and meteorology can be found in the 
amount of information being usable for modeling the statistical parameters. In 
geostatistics, the usable information or the sample for modeling is only the actual 
predictors 𝑍(𝐬௜ , 𝑡) (𝑖 = 1, . . . ,𝑀) which belong to a fixed instant of time, that is 
a single realization in time (Cressie, 1991), while in meteorology we have 
spatiotemporal data, namely long data series which form a sample in time and 
space as well and make possible to model the climate statistical parameters in 
question. If the meteorological station location 𝐒௞ (𝑘 = 1, . . ,𝐾) have long data 
series 𝑍(𝐒௞ , 𝑡)(𝑡 = 1, . . ,𝑛) then the climate statistical parameters can be 
estimated statistically for the stations (Szentimrey et al, 2011).  

3.1. Modeling of monthly climate statistical parameters for a half minutes grid 

3.1.1.  First step of modeling by using model variables 

The monthly climate statistical parameters belonging to the stations 𝐒௞  (𝑘 = 1, . . ,𝐾) can be used for modeling the correlation structure as well as the 
spatial variability of local statistical parameters (Szentimrey and Bihari, 2014). 
The basic principle of this neighborhood modelling is as follows. 
Let 𝑃(𝐬), 𝑄(𝐬), 𝑟(𝐬ଵ, 𝐬ଶ)(𝐬, 𝐬ଵ, 𝐬ଶ ∈ 𝐷) be certain model functions depending on 
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different model variables with the following properties, within a neighborhood ฮ𝐒௝ଵ − 𝐒௝ଶฮ < 𝑑଴               (𝑗ଵ, 𝑗ଶ = 1, . . ,𝐾): 

(a) Modeling of correlations is 𝑟൫𝐒௝ଵ, 𝐒௝ଶ൯ ≈ corr൫𝑍(𝐒௝ଵ, 𝑡),𝑍(𝐒௝ଶ, 𝑡)൯ ; 
(b) Modeling of difference of means (E) is 𝑃൫𝐒௝ଵ൯ − 𝑃൫𝐒௝ଶ൯ ≈ 𝐸൫𝐒௝ଵ൯ − 𝐸൫𝐒௝ଶ൯; 
(c) Modeling of ratio of standard deviations (D) is     ொ൫𝐒ೕభ൯ொ൫𝐒ೕమ൯ ≈ ஽൫𝐒ೕభ൯஽൫𝐒ೕమ൯ . 
The model variables may be distance, height, topography. 
 

3.1.2. Second step of modeling by interpolation  

Predictand location is 𝐬଴, predictor station locations are  𝐒଴௜ (𝑖 = 1, . . . ,𝑀). The 
weighting factors can be calculated according to Theorem 1, where 𝐫,  𝐑 contain 
the modeled predictand-predictors, predictors-predictors correlations based on 
Section 3.1.1 (a). 
Modeling of means, expected values (E) by additive interpolation is 𝐸(𝐬𝟎) = ෍𝜆௜൫𝑃(𝐬𝟎) − 𝑃(𝐒𝟎𝒊)൯ெ

௜ୀଵ + ෍𝜆௜𝐸(𝐒𝟎𝒊)ெ
௜ୀଵ  

Modeling of standard deviations (D) by multiplicative interpolation is 𝐷(𝐬଴) = ∏ ቆொ(𝐬బ)ொ(𝐒బ೔) ⋅ 𝐷(𝐒଴௜)ቇெ௜ୀଵ ఒ೔
. 

 
 

3.2. Relation of daily and monthly data interpolation 

Theorem 2 
 
Let us assume the following properties for the daily values within a month: 

(i) Expected values and standard deviations are 𝐸ௗ(𝐬଴) − 𝐸ௗ(𝐬௜) = 𝐸଴௜,   ஽೏(𝐬బ)஽೏(𝐬೔) = 𝐷଴௜  (𝑖 = 1, . . . ,𝑀 ;   𝑑 = 1, . . ,30)  
(ii) Correlations  

 corr ቀ𝑍ௗభ൫𝐬௜భ , 𝑡൯, 𝑍ௗమ൫𝐬௜మ , 𝑡൯ቁ = 𝑟௜భ௜మௌ ⋅ 𝑟ௗభௗమ்   (𝑖ଵ, 𝑖ଶ = 1, … ,𝑀 ;   𝑑ଵ,𝑑ଶ = 1, . . ,30),  
where 𝑟௜భ௜మௌ  is the correlation structure in space and 𝑟ௗభௗమ்  is the correlation 
structure in time. 
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Then the optimum interpolation parameters for the daily values and the monthly 
mean are identical: 𝜆௜,ௗ = 𝜆௜,௠௢௡௧ℎ  (𝑖 = 0, . . . ,𝑀 ;   𝑑 = 1, . . ,30). 
Moreover, the representativity values for the daily values and the monthly mean 
are also identical: 𝑅𝐸𝑃ௗ(𝐬଴) = 𝑅𝐸𝑃௠௢௡௧ℎ(𝐬଴)  (𝑑 = 1, . . ,30) in the case of 
optimal interpolation parameters. 
Consequently, the monthly modeled climate statistical parameters and the 
modelling methodology can also be applied to model the daily climate statistical 
parameters. 
Special modeling parts for daily data are modeling of temporal daily 
autocorrelations 𝜌(𝐬) and daily standard deviations 𝐷ௗ௔௜௟௬(𝐬) per months. We 
assume that the daily data of a given month constitute an AR(1) process with 
common standard deviation 𝐷ௗ௔௜௟௬(𝐬)  and temporal first-order autocorrelation 𝜌(𝐬). Modeling of autocorrelation 𝜌(𝐬) by additive interpolation is 𝜌(𝐬଴) = ∑ 𝜆௜𝜌(𝐒଴௜)ெ௜ୀଵ  ,

 where autocorrelations 𝜌(𝐒଴௜) belonging to the stations and the weighting factors 
are calculated according to Section 3.1.2. The daily standard deviation 𝐷ௗ௔௜௟௬(𝐬) can be estimated by using the monthly standard deviation 𝐷௠௢௡௧ℎ(𝐬) 
and the first-order autocorrelation 𝜌(𝐬).  
The RMSE can be calculated as follows: 𝑅𝑀𝑆𝐸(𝐬0) = 𝐷(𝐬0) ⋅ (1 − 𝑅𝐸𝑃(𝐬0)). 
 

3.3. Modeled monthly and daily spatiotemporal climate statistical parameters in 
MISH 

The necessary unknown climate statistical parameters can be modeled for a half 
minutes grid. These modeled monthly and daily spatiotemporal statistical 
parameters in MISH system are: 
(i) spatial expected values (spatial trend) 𝐸(𝐬), 

(ii) spatial standard deviations 𝐷(𝐬), 
(iii) spatial correlations 𝑟(𝐬ଵ, 𝐬ଶ), and 

(iv) temporal first-order autocorrelations 𝜌(𝐬). 
Consequently, the first two spatiotemporal moments can be modeled for daily and 
monthly data by the MISH procedure! The normal distribution is uniquely 
determined by these moments. Some examples for the modeled climate statistical 
parameters are presented in Fig. 2.  
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Fig. 2. Example for modeling of present climate by MISH. 
 
 
 

4. The main features of software MISHv2.01 

The new software version of MISH method (Szentimrey and Bihari, 2007, 2014; 
Szentimrey, 2017, 2021, 2023c) is under development, and it is consisting of two 
units that are the modeling and the interpolation systems. The interpolation system 
can be operated on the results of the modeling system. We summarize briefly the 
most important facts about these two units of the software. 

Modeling subsystem for climate statistical (local and stochastic) 
parameters: 

– Modeling of all the first two spatiotemporal moments for daily and monthly 
data (expected values, standard deviations, spatiotemporal correlations).  

– Based on long homogenized data series and supplementary deterministic 
model variables. The model variables may be such as height, topography, 
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distance from the sea, etc. Neighborhood modeling, correlation model for 
each grid point, dense half minutes grid. 

– Benchmark study, cross-validation test for interpolation error or 
representativity.  

– Modeling procedure must be executed only once before the interpolation 
applications. 

Totally different principle from the other methods! 
Interpolation subsystem:  

– Additive (e.g., temperature) or multiplicative (e.g., precipitation) model and 
interpolation formula can be used depending on the climate elements. 

– Daily, monthly values and many years’ means can be interpolated. 
– Few predictors are also sufficient for the interpolation and no problem if the 

greater part of daily precipitation predictors is equal to 0. 
–  The expected interpolation error RMSE is modelled too, representativity 

examination of arbitrary station network is performed.   
–  Real time quality control for daily and monthly data (additive model). 
– Capability for application of supplementary background information 

(stochastic variables), e.g., satellite, radar, forecast data. (with QC: data 
assimilation) 

– Data series completion that is missing value interpolation, completion for 
monthly or daily station data series.  

– Capability for interpolation, gridding of monthly or daily station data series, 
as grid-point and grid-box average datasets alike. 

 
The elder versions of MISH-MASH software can be downloaded from: 
http://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/ 
We plan to share the new version MISHv2.01 next year (2025). 

5. The relationship between MISH and data assimilation 

The MISH system is capable of interpolation with background information and 
quality control (see Fig. 1), which is essentially a data assimilation procedure 
(Szentimrey, 2016).  

5.1. Interpolation with background information in MISH 

The background information, e.g., forecast, satellite, radar data can be efficiently 
used to decrease the interpolation error. In this paper only the interpolation based 
on additive model or normal distribution is presented. According to Section 2, let 
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us assume that, 𝑍(𝐬଴, 𝑡) is the predictand, 𝑍∧(𝐬଴, 𝑡) = 𝜆଴ + ∑ 𝜆௜𝑍(𝐬௜ , 𝑡)ெ௜ୀଵ  is the 
interpolated predictand, moreover, there is given the 𝐆 = ሼ𝐺(𝐬, 𝑡) | 𝐬 ∈ 𝐷 ሽ 
background information on a dense grid. 
Then the principle of interpolation with background information is that the 
interpolated predictand given G  can be expressed as follows: 𝑍∧ீ(𝐬଴, 𝑡) = 𝑍∧(𝐬଴, 𝑡) + 𝐸 ൬𝑍(𝐬଴, 𝑡) − 𝑍∧(𝐬଴, 𝑡) | 𝐆൰,  (1) 

where E ൬𝑍(𝐬଴, 𝑡) − 𝑍∧(𝐬଴, 𝑡) | 𝐆൰ is the conditional expectation of  𝑍(𝐬଴, 𝑡) − 𝑍∧(𝐬଴, 𝑡), given G . 

5.2. Data assimilation and reanalysis data 

The forecast and the reanalysis data are based on the data assimilation which 
procedure is in strong relationship with the methodology of interpolation with 
background information. The Bayes estimation theory is the mathematical 
background of the data assimilation methods in meteorology. The purpose of data 
assimilation is to determine a best possible atmospheric state using observations 
and short range forecasts. The typical way applied in practice to estimate the true 
atmospheric state is the minimization of the following variational cost function: 
 𝐽(𝐳) = (𝐳 − 𝐠)୘𝐐ିଵ(𝐳 − 𝐠) + (𝐲଴ − 𝐅𝐳)୘𝐏ିଵ(𝐲଴ − 𝐅𝐳) , (2) 
 
where 𝐳 is the analysis field, predictand (grid), 𝐠 is the given background field 
(forecast), 𝐲଴ is the given observations, predictors; 𝐅𝐳 = E(𝐲଴|𝐳), 𝐐 is the 
background error covariance matrix, and  𝐏 is the observation error covariance 
matrix. 
It can be proved that this procedure is essentially an interpolation with background 
information including a quality control part for the predictors. The cost function 
(Eq. (2)) is known and referred by the forecasting community, as it is based on 
the Bayesian estimation theory. However, there are some mathematical omissions 
and simplifications at this cost function (Szentimrey, 2016).  
This mathematical derivation of the Bayesian cost function is not correct, 
therefore, the decision according to Eq. (2) is not a real Bayes decision. For 
example this formula includes implicitly the assumption that the conditional 
expectation of 𝐳, given 𝐠 is identical with 𝐠, i.e., E(𝐳|𝐠) = 𝐠, that means the 
conditional expectation does not depend on climate, and the forecast is always 
optimal. Or the relation of the background error covariance matrix Q  and the 
climate is absolutely not known by the forecasting community. Consequently, the 
necessary climate statistical parameters are also neglected at the data assimilation 
procedures applied in practice.  
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The data assimilation technique is used also to produce reanalysis data series in 
order to monitor the climate change based on past observation series. However, 
beside the inadequacies mentioned above there are further sources of errors for 
reanalysis data. One of them is the inhomogeneity of the used station data series 
i.e., these series are often affected by artificial shifts due to changes in the 
measurement conditions (relocations, instrumentation). Another problem may be 
the little spatial representativity, i.e., relatively few station data series are used for 
production of reanalysis data series as a consequence of the data policy between 
the countries (Lakatos et al., 2021; Bandhauer et al., 2022). 

6. Conclusion 

It is a nonsense that we try to model the future climate but we do not know the 
present climate. We should know the present climate well, if want an efficient 
methodology for spatial interpolation and data assimilation. For this purpose, 
special advanced mathematics is needed of course. Originally, we have developed 
the MISH system also to model the climate statistical parameters, i.e., climate, by 
using long station data series, since the optimal spatial interpolation needs 
modeled climate statistical parameters. But the question can be turned back. The 
climate modeling can be based on spatial interpolation of station climate statistical 
parameters. 
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