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Abstract— Ammonia is one of the most significant environmental pollutants. 
Concentration measurements, identifying the sources and studying the transformations in 
the biosphere are essential, and they are the focus of many investigations. The near-infrared 
(≈1530 nm) photoacoustic method for simultaneous and selective determination of 
14NH3/15NH3 isotopologues reported here can be suitable for monitoring these phenomena 
and processes. So far, the photoacoustic method has not been used for this kind of 
examination. The application of our measurement method makes it possible to eliminate 
the disadvantages of the previous measurement methods. The detection limit of the PA 
system is 0.14 ppm and 0.73 ppm for 14NH3 and 15NH3, respectively, which can be 
improved by orders of magnitude with further development of sampling and measurement 
techniques.  
  
Key-words: atmospheric ammonia, isotopologues of ammonia, isotope abundance of 
15NH3, ammonia concertation, isotope tracer, isotope labelling, photoacoustic method for 
ammonia, near-infrared spectroscopy  
 

 
 
 

https://doi.org/10.28974/idojaras.2023.1.3


44 

1. Introduction 

Nowadays, one of the most serious environmental risks is the accumulation of 
reactive nitrogen in different spheres of the Earth. Since the beginning of the last 
century, the Haber-Bosch ammonia synthesis converts a great amount of inert N2 
into NH3 first of all for fertilizer production. The global NH3 production is about 
175 million tons per year and is expected to increase by 3–5% per year in the 
future (Wang et al., 2021). It is estimated that the efficiency of applied N is less 
than 50 and 70% under tropical conditions and temperate regions, respectively 
(Baligar and Bennett, 1986; Malhli and Nyborg, 1991; 1992; Malhi et al., 2001). 
Losses of N are mainly due to leaching, runoff, and volatile losses of ammonia. 
Further losses occur during harvesting, food processing, trading, and consumption. 
Finally, all the nitrogen content of fertilizers enters the environment, accumulating 
yearly in various spheres.  

Circulation of anthropogenic nitrogen in Earth’s atmosphere, hydrosphere, 
and biosphere has a wide variety of consequences, causing multiple effects in the 
atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on 
human health. This sequence of effects is called nitrogen cascade (Galloway et 
al., 2003). The harmful effects of reactive nitrogen can be traced in the 
deterioration of water quality (eutrophication), the impact on air quality 
(visibility, PM2.5, smog), the reduction of biodiversity, the acidification of soil and 
groundwater, the increase of the greenhouse effect, and the decomposition of 
stratospheric ozone by N2O. 

Since ammonia plays a prominent role in the nitrogen cascade, the 
investigation of the atmospheric concentration and the exchange of NH3 gas 
between the atmosphere and the surface has been among the main research goals 
of the last decades. 

Investigation of the concentration ratio of stable ammonia isotopes (14NH3 
and 15NH3) is a good tool to monitor the exchange and transformation processes. 
There are two stable isotopes of nitrogen, 14N and 15N. Their molar ratio in 
atmospheric N2 is 0.99636/0.00364, i.e., the volume ratio of 15N is 0.3653%. The 
isotope abundance in the inert atmospheric N2 is regarded as the standard in the 
calculation of isotope abundance of 15N, however, this ratio changes due to the 
fractionation. All of the physical and chemical processes are accompanied by the 
change in the isotope abundance of 15NH3. With the determination of the 
abundance of 15NH3 (δ15N-NH3) we can qualify and quantify the ammonia 
emission sources (Bhattarai et al., 2021; Elliott et al., 2019; Felix et al., 
2013;2017; Wang et al., 2022).  

Isotope labelling is another frequently used method in environmental 
investigations. Since 15N-enriched N compounds became commercially available 
in the 1970s, the number of applications of the stable isotope to study soil 
processes rapidly increased, taking advantage of the phenomenon that biological 
processes prefer the lighter 14N isotope, i.e., the products of the processes contain 
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less 15N, as before the processes (i.e., δ15N decreases) (Nômmik et al., 1973; 
Sánchez, 2001; Zhao et al., 2016). The addition of a 15N tracer to follow the 
catalytic reduction of nitric oxide to ammonia is also a frequently used method 
(Ettireddi et al., 2012; Ozkan et al., 1994).  

There are several methods to determine the concentration of atmospheric 
ammonia. During the concentration measurement selectivity, sensibility, response 
time, and minimum detectable concentration are the most critical parameters. A 
general disadvantage of the measurement of ammonia gas is the adsorption on the 
surface of the sampling device or the walls of the sensor cell resulting in bias 
during the measurement. Some of the procedures are based on physical methods 
like spectroscopy (Bobrutzky et al., 2010; Dang et al., 2019; Gall et al., 1991; 
Huszár et al., 2008; Pushkarsky et al., 2002; Schilt et al., 2004), spectrometry 
(Martin et al., 2016; Norman et al., 2007; 2009; Nowak et al., 2006; 2007; 
Vasileiou et al., 2015a; 2015b; 2016), or fluorometry (Amornthammarong et al., 
2011; Kéruel and Aminot, 1997). The chemical methods are mostly based on the 
transformation of ammonia gas into ammonium ion in the aquous phase, followed 
by the determination of ammonium (Allegrini et al., 1987; ASTM, 2015; EMEP, 
1996; Erisman et al., 2001; Jeong et al., 2013; Koroleff, 1970; Thomas et al., 
1973; 2002; Rice et al., 2012).  

Separated simultaneous measurement of 14NH3 and 15NH3 isotopologues of 
ammonia gas can mostly be achieved by physical methods (Phillips et al., 2018; 
Chang et al., 2016; 2019; Griffiths and de Haseth, 2007; Felix et al., 2017; 
Koletzko et al., 1995; Lee et al., 2011; 2014; Lehmann, 2017; Liu et al., 2020; 
McEnaney et al., 2017; Murakami et al., 2005; Nielander et al., 2019; Nômmik, 
1973; Simonova and Kalashnikova, 2019; Taghizadeh-Toosi et al., 2012; Tonn et 
al., 2019; Wang et al., 2017; Wu et al., 2019; Zhao et al., 2016).  

So far, the employed analytical methods, especially in spectroscopy, are 
either very expensive, need large sensing volumes (NMR: Nuclear magnetic 
resonance method), have uncertainties at very low NH3 concentrations (IRMS: 
isotope ratio mass spectroscopy), or are limited by the availability of the tunable 
laser light at the appropriate wavelength (CRDS: cavity ring-down spectroscopy), 
or simply have a problem in the control of its background signal (CIMS: chemical 
ionization mass spectroscopy).  

Most of the analytical methods are not continuous, were done by active or 
passive sampling, and the evaluation is complicated. One exception is the method 
of Phillips et al. (2018) where the optical path length is of the order of 10 m 
through a generated plume making its application in the laboratory impossible. 

To the best of the authors’ knowledge, photoacoustic method has not been 
used for the simultaneous measurement of ammonia isotopes. The aim of our 
work has been to develop a simple, reliable, automatic, and robust system for the 
selective, rapid, and sensitive measurement of ammonia isotopes by using a near-
infrared photoacoustic (NIR-PA) system.  
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Moreover, to achieve the above aim, there was a need for methodological 
development, construction of the measuring instruments, and finally, 
development of gas sampling procedures to be used. The following sub-aims were 
therefore carried out:  

• Design and construction of a NIR-PA system capable of selectively 
measuring and differentiating between ammonia gas isotopes (14NH3 and 
15NH3). 

• Selection and optimization of the measurement and modulation parameters 
(wavelength, laser operating temperature, etc.). 

• Construction, testing, and calibration of the newly developed NIR-PA 
system. 

• Solving the incidental problems and improvement of the system by re-
optimization of the selected parameters. 

• Evaluation of the developed NIR-PA system. 
 

2. Experimental 

2.1. Instrumentation set-up 

The measurement system consisted of two main parts. A photoacoustic detection 
unit for concentration measurement, employing two types of diode lasers (an 
external cavity diode laser and a telecommunication type fiber coupled Near 
Infrared DFB diode laser), together with integrated electronics. The electronic's 
main purpose was to amplify, provide temporal averaging, filter the microphone 
signal, control the temperatures of the laser and the detection cell, and feed the 
modulated driving current to the diode laser. 

The second part consisted of ammonia isotopes gas generating units which 
were of two types; NH3 in N2 cylinder (1000 ppm ± 1%, with a purity of 5.0) 
supplied by the Hungarian Messer company) and a chemical reaction-NH3 
generation-based mode. For more details, refer to Ouma et al. (2022).  

2.2. Spectral measurements and analytical parameters 

The 14NH3 and 15NH3 spectra were recorded using two DFB diode lasers 
separately, with the same modulation parameters as shown in Fig. 1. The 
wavelength modulation (WM) was used during the measurements due to its 
improved sensitivity and noise-rejection capabilities over amplitude modulation. 
The WM spectrum is a derivative form of the absorption spectrum.  
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Fig 1. PA spectra of the ammonia isotopes; 600 ppm 15NH3 (black line) and 95 ppm 14NH3 
(red line) as recorded by DFB diode laser. Cross-sensitivity spectrum of 5% water vapor 
(blue line) is also shown. 

 
 
 
 
 
 

 
To minimize the cross-sensitivity and the disturbing effect of water vapor, 

four peak wavelengths, two for each isotope as shown in Fig. 1, were selected for 
the calibration measurements. Using two-two wavelengths for each isotope 
reduces the cross-sensitivity and increases the sensitivity of the method. 

Calibration of the ammonia isotopes was then done using both the cylinders 
and the chemical reaction NH3 generation methods. Measurement of the 
photoacoustic signal (PAS) in the function of volume mixing ratio (VMR) was 
performed in the range of 0–1000 ppm. The cross-sensitivity between the two 
isotopes measured simultaneously, calculated calibration lines, and the slope of 
the calibration line in nV/ppm which corresponded to the sensitivity of the NIR-
PA system are all given in Table 1. For more technical details, refer to Ouma et 
al. (2022).  
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Table 1. Summary of the analytical parameters of the newly developed NIR-PA system 
(PAS: photoacoustic signal; VMR: volume mixing ratio) 

Parameters Values obtained 

Modulation current (mA) AC/DC: 10 /146 

Modulation temperature (°C) 

Laser 1: 18.10 °C and 18.69 °C for 14NH3 
              8.65 °C and 9.45 °C for 15NH3 

Laser 2: 20.95 °C and 21.56 °C for 14NH3  
              11.77 °C and 12.36 °C for 15NH3 

Measurement wavelengths (nm) 
14NH3: 1531.66 and 1531.73  
15NH3: 1531.37 and 1531.45  

Cross-sensitivity (nV/ppm) 
14NH3: –1.3×10–4  
15NH3: 7.4×10–3   

Cross-sensitivity bias 
14NH3: –0.002% 
15NH3: 0.57% 

Calculated calibration lines  
14NH3: PAS (µV) = 6.61×VMR (ppm)  
15NH3: PAS (µV) = 1.3×VMR (ppm)  

Detection limit (ppm) 
14NH3: 0.14   
15NH3: 0.73  

System response time (s) 3.5  

 
 
 

3. Possible applications for atmospheric measurements 

3.1. Application of 15N as tracer during electrochemical ammonia synthesis  

There is an alternative way for the high energy-intensive and CO2 emitter Haber-
Bosch ammonia synthesis, the electrocatalytic reduction of N2 into ammonia (see 
e.g., Qing et al., 2020). This method, although still in the research and 
developmental stage, has shown great potential and is deemed less polluting and 
environmentally sustainable. While the process has produced promising results, 
several problems have been identified like its low efficiency (0.1–8%) and 
inaccuracy in the assessment of NH3 levels produced. The latter problem is mostly 
due to the inability of the current NH3 detecting equipment and analytical methods 
to reliably measure the low NH3 gas produced (sub-ppm levels) without 
interference from common contaminants, such as human breath, laboratory air, 
contaminants in N2 gas sources used in the synthesis process, etc.  

3.2. Application of 15N tracer in environmental analyses 

There are lots of possible applications of the isotope tracer technique accompanied 
by photoacoustic detection, mostly in the investigation of soil biology and plant 
physiology processes. The nitrogen loss in form of ammonia can be estimated by 
the application of 15N labeled fertilizer (e.g., Nômmik, 1973; Zhao et al., 2016). 
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The transformation of soil N, like denitrification or the N fixation by plants, can 
also be traced by this technique (Sánches, 2001).  

3.3. Application in source apportionment of atmospheric ammonia  

As it was mentioned in the introduction, the reference abundance of 15N 
(0.3653%) is changing in each physical and chemical process of ammonia due to 
the fractionation. The change in abundance (δ15NH3, ‰), i.e., the source signature 
is representative of the given physical and chemical process. Identifying the 
ammonia source (e.g., agricultural or fossil fuel combustion process, industry, 
heating, traffic) by nitrogen isotope helps in designing a mitigation strategy for 
policymakers, but the existing methods have not been well validated (Pan et al., 
2020). The study of Bhattarai et al. (2020) highlights that collecting 
representative samples remains a challenge in fingerprinting δ15N(NH3) values of 
NH3 emission sources, i.e., during the sampling, the isotope abundance changes 
compared to that of the representative for the given process. Since the application 
of PA systems does not need any sampling procedure the error caused by sampling 
and subsequent laboratory preparation can be avoided.  

Because of the low abundance of 15NH3, the source apportionment without 
the addition of a 15N tracer requires a detection limit lower by orders of magnitude 
than it is reported in this paper. It can be achieved by the modification of the 
photoacoustic system described here by replacing the light source with a quantum 
cascade laser (QCL). Another possibility to improve the detection limit is the use 
of preconcentration sampling similarly to the method reported by Pogány et al. 
(2009).  

4. Conclusion 

This work has shown that measurement of ammonia isotopes (14NH3 and 15NH3) 
using a photoacoustic measuring system fitted with a near-infrared diode laser 
light source around the wavelengths of 1532 nm is possible. Both NH3 isotopes 
recorded strong absorption lines at this particular wavelength, while the values of 
their minimum detectable concentrations were 0.14 ppm for 14NH3 and 0.73 ppm 
for 15NH3. Due to the developed NIR-PA systems’ robustness, high sensitivity, 
low cross-sensitivity, and short response time, it is expected to find a practical 
application in the detection and measurement of isotopically labeled NH3 gas 
during the electrochemical synthesis process, as well as in the isotope tracer or 
source apportionment experiments.  

Application of the photoacoustic method in these fields is a novelty and 
enables the elimination of the disadvantages of the previously used measurement 
techniques (high cost, complicated sampling, laboratory preparation, the error 
caused by sampling when measuring fractionalization, etc.). Fast response time is 
also an advantage in contrast to most of the previous measurement methods. 
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